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A Numerical Simulation of the Full

Two-Dimensional Electrothermal

De-Icer Pad

Konstanty C. Masi_Llaniec

SUMMARY

The ability to predict the time-temperature history of
electrothermal de-icer pads is importa:It in the subsequent design of
improved and more efficient versions. Thesede-icer pads are installed
near the surface of aircraft component:_,for the specific purpose of
removing any accreted ice. The proposed numerical model can
incorporate the full two-dimensional geometry through a section of a
region (i.e., section of an airfoil, e:c.), that current one-dimensional
numerical codes are unable to do. Thu_, the effects of irregular
layers, curvature, etc., can now be ac::ounted for in the thermal

transients. Each layer in the actual qeometry is mapped via a

body-fitted coordinate transformation :nto uniform, rectangular

computational grids. The relevant hea_ transfer equations are

transformed and discretized. To model the phase change that might occur

in any accreted ice, in an enthalpy fo mulation the phase change

equations are likewise transformed and discretized. The code developed

was tested against numerous classical ._nd numerical solutions, as well

as against experimental de-icing data 9n a UHIH rotor blade obtained

from the NASA Lewis Research Center in Cleveland, Ohio. The excellent

comparisons obtained show that this code can be a useful tool in

predicting the performance of current _e-icer models, as well as in the

designing of future models.
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CHAPTER I INTROE_CTION

The formation of ice on the exterior surfaces of aircraft has a

considerable effect on flight performance, as it increases drag and

decreases lift. Thus an aircraft must be designed with the equipment

necessary for ice removal or prevention. Basically, aircraft ice

protection systems can be classified as either anti-icing or de-icing.

The anti-icing principle involves the prevention of ice formation

on the protected area at all times. Typical anti-icing methods make use

of chemicals and/or the passage of hot bleed air through channels below

the surface on which ice formation is to be prevented. In contrast,

de-icing involves the periodic removal of accreted ice by mechanical or

thermal means. For ice removal systems, _ttention must also be given to

uniform shedding of the ice. Itagaki [I] elaborates on the dangers of

non-uniform shedding. Various de-icing methods that have been

investigated include pneumatic boots and thermal techniques. The latter

consists of cyclic heating of discrete elements by electrothermal means.

The energy requirements are significantly less for de-icing systems than

they are for anti-icing systems. From experimental studies, Stallabrass

[2] concluded that the electrothermal method has the most advantages as

a de-icing mechanism, although it does have some maintainability/

reliability problems. Werner [3] has also reported that the

electrothermal de-icing technique is the most commonly used method, and

that it has been applied to both fixed a_d rotary wing aircraft.



The objective of an electrothermal de-icing system is to raise the

composite blade surface/ice interface temperature above the melting

temperature of ice, resulting in a very thin interfacial layer of liquid

which reduces the ice adhesion to the blade surface. Aerodynamic and/or

centrifugal forces can then readily sweep the unmelted ice from the

surface. A typical electrothermal de-icer pad is essentially a

composite body consisting of (I) a metal substrate (the aircraft blade),

(2) an inner layer of insulation, (3) a heating element, (4) an outer

layer of insulation, and (5) an abrasion shield. Figure I-I depicts a

two-dimensional cut-away view of the typical construction of an

electrothermal de-icer pad, as well as a representative set of materials

and thicknesses used for fabrication. The cross-section shown

represents a view of the heater pad normal to the run of the heating

elements.

The heating element usually employed in an electrothermal de-icer

pad consists either of a woven mat of wires and glass fibers or of

multiple strips of resistance ribbon. The gaps which exist between the

heating elements can reduce the effectiveness of the heating pad

de-icing performance, causing non-uniform melting of the ice. The two

insulation layers, which usually consist of a resin impregnated glass

cloth, serve to provide electrical insulation for the heating element.

In order to direct more heat flow toward the ice layer, it is necessary

to use a greater thickness for the inner insulation than for the outer

insulation. The abrasion shield serves to protect the de-icer pad from

rain erosion as well as dust/sand erosion, and to provide more uniform

heating, thus minimizing cold spots above the heater gaps.



Ice

Liquid

Shield

Insulation

Substrate

Heater

Layer Material Tqickness Diffusivity
(Hr) (Ft2/In)

Substrate 755-T6 Aluminum 0.087 1.65

Inner
Insulation Epoxy/Glass 0.050 0.0087

Heater Nichrome 0.004 0.138

Outer
Insulation Epoxy/Glass 0.010 0.0087

Abrasion
Shield 304 Stainless 0.012 0.15

Ice 0.250 0.0445

Figure 1-1 Typical Materials and Construction of an Electrothermal
De-lcer Pad
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The ability to predict the performance of an electrothermal de-icer

pad is essential to the design and subsequent fabrication of these

units. To accomplish this, some method of determining the

time-temperature history throughout the pad needs to be developed.

Figure I-2 provides a pictorial representation of an electrothermal

heater section that is part of an airfoil, with some indication of the

nature of the thermophysics involved. Clearly, the conduction of energy

is three-dimensional in nature, and occurs in a curved, composite body.

The temperature plot to the right of the figure provides a qualitative

representation of a typical temperature distribution. The temperature

is highest at the heater center, drops rapidly under the heater (where

the insulation is thickest) and less rapidly in the direction of the ice

(where the insulation is thinest). Development of an analytical model

for such a problem is virtually impossible. A numerical model is more

realizable, but even this is somewhat impractical, unless some

simplifications are made to the geometry and the thermophysics.

Figure I-3 illustrates three alterations of the full de-icing problem,

each having different degrees of problem simplification. The

one-dimensional model is the simplest. In this model, all layers are

assumed to be planes infinite in extent. The temperature at a given

location is assumed to be constant throughout the plane containing that

point. It is generally assumed that the layers are in perfect thermal

contact and that they have constant material properties.

Stallabrass [2] appears to have been the first to attempt a

numerical solution of an electrothermal de-icing problem using a

one-dimensional model. His numerical scheme used an explicit finite
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difference method. Results agreed well w_th approximate analytical

solutions for relatively short real times into the problem. To account

for the effect of the phase change on the temperature transients within

the composite blade, the node at the ice-6brasion shield interface was

held at the freezing temperature until the estimated heat flux into the

control volume containing the node was deemed sufficient to cause

melting.

Baliga [4] improved the numerical mo_ielling of the same problem by

handling the phase change heat transfer via a better approach, making

use of the high heat capacity formulation. Marano [5] further improved

upon Baliga's numerical formulation by ap_lying the so-called enthalpy

method to model the phase change problem. Gent and Cansdale [6], solved

the same problem for conduction only (no phase change), and obtained

nearly the same results as Marano for conc_dction only.

The two-dimensional problem, represeT_ted by the middle schematic in

Fig. I-3, was solved by Chao [7] and DeWitt, et al. [8]. Chao's work

was a direct extension of Marano's one-dirJensional numerical formulation

and procedures to two dimensions. Of func!iamental importance, the effect

of the heater gap width on de-icing performance was studied

numerically.

Leffel [9] provided detailed experimental results of the thermal

transients induced by an electrothermal d_-icing unit on a UHIH

helicopter rotor blade section. These experimental results were used to

validate the codes developed by Chao and Farano. The experimental

results revealed that when the layers of e helicopter blade are

sufficiently thin, and the curvature sufficiently gradual, Marano's



one-dimensional code yields excellent results over most of the blade.

Furthermore, it was found that there are two regions of potentially

substantial inaccuracies (depending on heater wattages, material

properties, etc.). These are at the immediate edges of the heater

banks, and in the region of large curvature at the leading edge of the

blade that wraps around the nose block.

Chao's code can model the heater edges, but it can not handle the

variable thickness introduced by the nose block, nor the high degree of

curvature. Thus, it is necessary to develop a model that can account

for these difficulties. This development is pictorially represented by

the third schematic of Fig. I-3. The creation of a numerical code

capable of accurately predicting electrothermal de-icer pad thermal

transients in more complex regions of the blade is the topic of this

work.

Overview of Strategy to Solve Problem

The primary modelling difficulty that must be faced in this study

is that due to the irregularity of the blade-layer geometry. There are

essentially three approaches that can be taken to account for irregular

body curvature. The first is to overlay the irregular geometry with a

regular grid. Those points not falling directly on the boundary will

require an interpolating scheme that must be incorporated either

directly or indirectly into the computational algorithms of the field

equations. There will undoubtedly be some degree of inaccuracy

introduced into the solution as a consequence. If the solution desired

is in a region reasonably far removed from the boundary, this approach

will generally yield excellent results. If, however, the solution



desired is located at the boundary, the inaccuracies introduced maybe

unacceptable. Such is the case in this pr_>blem,where the critical

temperatures and the initial change of phase occur at the boundary

formed by the abrasion shield and the ice layer. Moreover, this

approach is computationally quite time con_suming.

The second approach is the finite elenent method. Tnis technique

has become fairly common and affords many ]dvantages in problems having

irregular geometries. The standard method needed to achieve a solution,

however, is by an inversion of the appropriate system matrix. For

problems requiring a large number of elements, a large matrix develops.

The inversion of this matrix is generally i>erformed by iterative means,

thus affording no computational advantage i>ver other techniques. Also,

the formuation of the problem required for more complex governing

equations will involve the inversion of a nultiple number of large

matrices for a "matrix statement" equivalent [10], [11] of the field.

In recent years, a finite difference _Iternative has arisen that

accurately models a boundary of irregular _i_hape. By this method the

body (or bodies) in the physical domain is numerically transformed into

a rectangular region in the computational plane. For a layered body,

the transformation produces a rectangle having the same number of layers

as the composite in the physical plane. %3_Lis mapping procedure, known

as body fitted coordinate generation, was _irst developed by Thompson,

et al [12], [13], [14], [15], and has beco:ne widely used in numerical

simulations of field problems [16], [17], [18], [19], [20]. The

principal advantage of the procedure is that any set of equations may be

numerically solved in a rectangular region on a uniformally spaced grid
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system. Thus, numerical interpolation between any irregular boundary

and adjacent interior grid points can be avoided. Figure I-4 depicts

the mapping strategy involved for the problem at hand. The numerical/

computational strategy needed essentially reduces to a finite difference

solution of a series of stacked, rectangular slabs. The primary

disadvantage of this technique is the necessity of spacially

transforming those portions of any relevant equations having a spacial

dependency. Depending on the equations to be transformed, the resulting

set of equations may become much more complex. Obviously, this has the

potential of making a numerically stable set of algorithms more

difficult to obtain.

This work represents the first known attempt at solving a layered

heat transfer problem that includes phase change in an irregular

geometry. The following chapter develops the spacial transformation

equations, and the operators needed to transform the governing

equations. The conduction equations are then transformed in Chapter 3,

with the phase change equations being transformed in Chapter 4. These

transformed equations are then used to simulate an iced airfoil, and the

predictions are compared with experimental test data.
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Substrate

Heater

Insulation

Shield

Ice

Figure 1-4 Pictorial Representation of how the
Composite Blade Geometry is Mapped
with Body Fitted Coordinate Transform
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CHAPTER 2 - BODY-FITTED TRANSFORMATION

In order to obtain a grid in the transformed plane a method with a

system of generating equations needs to be developed. The system of

equations that was used to generate the grid was Laplace's equations.

Virtually any partial differential equation can be used. Thompson, et

al. [15] presents alternatives by adding additional terms to Laplace's

equation that skews the grid in a desired direction where exceptionally

large gradients of a variable are expected. Laplace's equation was

chosen since this equation type is closest to the form of the equations

that was solved in the transformed plane. Thus, there are two

rectangular coordinate systems that are interrelated through the

equations that generate the grid in the transformed plane: x-y in the

real plane, and [-_ in the transformed plane.

It should be noted that for composite bodies, each region must be

mapped separately to insure accurate modeling of the true geometry. The

initial step of the mapping is to assign boundary points in the real

plane, which become boundary conditions in the transformed plane. Thus

by mapping each region separately, more accurate geometric modeling is

achieved. The assigned boundary points for two regions having a

boundary in common must be the same to insure a continuous grid

between regions. This makes the subsequent application of boundary

condition equations much less complex.
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Since the generating equation is ini'ially written in the real

plane, an exchange of variables must occu] to obtain an equivalent

set of equations in the tranformed plane _ioverning the distribution of x

and y coordinates in that region. This i.. the set of equations that is

subsequently used to generate a grid. Th_se equations will be developed

first, followed by a physical interpretation of the transformation.

Derivation o_f_fBody-Fitted Coordinate Tran.,form Equations

The partial differential equation used to generate the grid in the

transformed plane, Laplace's equation, is written as

--- + --_ = 0 (2-I)
_x 2

32r 1 32r 1

--- + --- = o

_xz _z

(2-2)

The first step in performing the required exchange of variables is to

establish derivatives for the inverse trarsform. In general notation

the inverse transform is represented as

x = f([,B) (2-3)

y = g(_,_)

The total derivative of each variable is

dx = -- d_ + -- dn

(2-4)

(2-5)
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ag ag

dy = -- dE + -- dT]

a_ an

(2-6)

Multiplying Eq. (2-5)by ag/an and Eq. (2-6)by _f/aD and

subtracting yields

-- dx - -- dy = d_

an an an a_

(2-7)

Similarly, Eqs. (2-5) and (2-6) may be multiplied by ag/a_ and _f/a_,

respectively, and subtracted to give

-- dx - -- dy =

aE at an a_

dn (2-8)

The Jacobian of the transformation may be defined as

j -

af af

a_ an

ag ag

a_ an

af ag ag _f
=

a_ an a_ an

Inserting this into Eqs. (2-7) and (2-8) and rearranging produces

(2-9)

Iag i

dE = dx .... dy

J an j a_

(2-10)

I ag 1 _f

d n = dx + - -- dy

j a_ j a_

(2-11)

Since _ and n are transforms of x and y, the derivatives of _ and D are

written as



15

dr = -- dx + .... dy (2-12)

dn = -- dx + .... dy (2-I 3)

_x i_/

Comparing like multiples between Eqs. (2-'i0) and (2-12), and between

Eqs. (2-11) and (2-13), yields the following quantities:

_ 1 8g 1 8y

---- _.-- -- ---- = -- ----

8x J 8_ J _

(2-14)

_, I _f I 8x

8y J Dr] J _q

(2-15)

_n 1 ag I _y

---- __. -- -- ---- =

_x J 8_ J _

(2-16)

_n 7 _ I _:
---- = -- ---- = -- ----

_y J 8_ J 8_

Using these indentities, the derivatives can now be rewritten as

differential operators, i.e.,

(2-17)

8 8_ 8 8n 8 1 9,/ 8 1 _y

8x 8x _ 8x 8rl J _)q 8_ J 8_ _q

(2-18)

-- = + = ...... + (2-19)
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Similarly,

)

_x z _x _x

_n 8_ J 8_ _'n _n _

8z I(_ Iz az z

1 _x _X _X

_y Z Z .... 2

+

8x I z 8!

(2-20)

(2-21)

The Laplacian operator can now be written as

{rclrY](_Z _Z I _x Z Y _x

--- +--_ ---_ b_/ + ...._x_ _y _ \_1 _ L

, V('I'<_:TI-::)b;_J+vvj ,,'

_x

+

(2-22)

If the following are defined,

(2-23)

_x _%
+

_ _n _E _n
(2-34)

(2-25)
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Equation (2-22) becomes

22 2 2 1 / 2Z _Z )Z \

--- + ......... _e 2_ .... + Y --_ )_x z _z z zJ _ _n an z

(2-26)

Equation (2-26) can now be used directly Io obtain the spacial field

equations needed to generate the coordinate lines in the physical

plane. Beginning with Laplace's equation in the real plane as the

generating equation, these equations are

_2 x _2 x _2 x

a .... 28 .... + Y .... 0

_2 _n _n 2

(2-27)

2y _ 2y 32y

.... 28 .... + y .... 0

3_2 _n 3n 2

(2-28)

Because Eqs. (2-27) and (2-28) have the v,_riable coefficients alpha,

beta and gamma in common (which are derivdtive functions of x and y ,

they are coupled and must therefore be solved simultaneously.

In order to formulate an equality of the normal flux boundary

condition in the transformed plane, a vec:or derivative transformatlon

needs to be developed.

by

The unit normal t) any graph f(x,y) = c is given

÷ vf

nf = {2-29)

Ivfl

Consequently the unit normal to n and _ c)ordinate lines are

÷ Vn

n
D = (2-30)

n (2-31)
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The solution of Eqs. (2-27) and (2-28) results in a distribution of x

and a distribution of y in the solution plane. Thus, in order to

represent a unit normal vector in this plane, its 'orientation' in the

real plane must be accounted for. The general operator in the real

plane for a directional derivative is

?= --i+ -- j

Applying Eqs. (2-18) and (2-19) to Eq. (2-32), the general operator

in the transformed plane for a directional derivative is

(2-32)

_=- i +

J _ _ _ _ _ _

(2-33)

It should be noted that the directional derivatives are needed in the

real plane, but are being represented by information that is contained

÷ ÷

in the transformed plane. Thus, the symbols i and j refer to the real

plane and do not need to be transformed.

Using Eq. (2-33), Vn and V_ clearly become

Vn= - i + --

J _
(2-34)

V_=- i - --
J 8n

(2-35)

In the next section a physical interpretation of the coefficients alpha,

Eq. (2-23), and gamma, Eq. (2-25), and how they are related to arc

lengths of oells in the physical plane will be presented. It will be
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shownthat

J J
(2-36)

J J
(2-37)

Hence, utilizing Eqs. (2-34) through (2-37)r Eqs. (2-30) and (2-31)

become

..... i + -- j
n _ _¢

------ ---- i -- ----

(2-44)

(2-45)

The temperature gradient at any point in the point plane is defined by

_T ÷ _T +

?T = -- i + -- j (2-40)

Applying Eqs. (2-18) and (2-19) yields the temperature gradient along

any point in the transformed plane as

VT = - i

+

(2-41)



2O

The gradient of temperature normal to a line of constant _ becomes

ST +

--- = n n • VT
Sn

n

..... i + --

i[<i:Ty-- ---- 1

j _. _r _n

- +

-y __ _q
_n (2-42)

The gradient of temperature normal to a line of constant _ becomes

_T ÷

--- = n F , ?T

an 6

I

(2-43)
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Equations (2-42) and (2-43) are those neede_ in formulating the normal

heat flux condition for a boundary common b, tween two regions.

Physical Interpretation and Use of the Body Fitted Coordinate

Transformation

Although field equations are written i;_ terms of physical plane

coordinates (x,y; r, _; etc.), their analyti_:al or numerical solution is

generally only convenient for a limited num]_er of smooth, regular

geometries. If the geometry is irregular t]_e solution in the physical

plane can become quite tedious. An irregul,_r body can be mapped into a

much simpler shape by the use of a body fit ed coordinate transfor-

mation, as shown in Figs. 2-I through 2-3.

If the composite body is simply connec _ed it will have an interior

solid which requires a slightly different t eatment. This is also

illustrated in the bottom two rectangles of Fig. 2-3. Care must be

taken to match the edges of the rectangle w th corresponding portions of

the interface for the layer which surrounds the solid.

The overall result of the transformati _n is the creation of a

series of connected rectangular strips. To generate the coordinate

system within these strips, two elliptic pa tial differential equations,

Eqs. (2-I) and (2-2), with Dirichlet bounda_'y conditions are solved.

The field equations used to develop the coo dinate system are Eqs.(2-27)

and (2-28), which are the end result of the exchange of variables needed

for the transformed plane. The variable co¢_fficients alpha, beta, and

gamma are defined by Eqs. (2-23) through (2 25).

Figures 2-4 through 2-6 conceptually sl,ow the procedure needed to

generate a grid, and a sample of what the fLnal results might yield.
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Figure 2-i" A General, ]rregularly Shaped Composite

Body.
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Figure 2-2" Division and Separation of an Irregularly

Shaped Composite Body for Subsequent

Mapping in the Transformed Plane.
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Figure 2-3: Spacial Appearance of an Irregular Composite

Body in the Transformed Plane,
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A set of x-y coordinate pairs need to be identified for the boundaries

of a given region in the physical plane. _ese values are then assigned

to boundary points for a rectangular region in the transformed plane.

The distribution of x,y coordinates in the _:,D plane are tied together

by the partial differential equation used to generate the grid.

Equations (2-27) and (2-28) are then solved simultaneously on the field,

with x and y coordinate values as the unkncwns. Upon convergence, the

solution yields a distribution of x and y c3ordinates within the field,

thereby accomplishing the goal of generating a grid. If the resulting

solution is in turn mapped onto the physical plane, its appearance would

take on the shape of a collection of quadrilaterals that approximate the

original regions. Thus, it can be seen that an improved approximation

is achieved as the number of boundary point_ chosen is measured,

especially on those portions of the boundarf that have a high degree of

curvature. The numerical solution requires the same number of arbitrary

points on the inner boundary as on the outer boundary to maintain a

rectangular grid in the transformed plane. Also, composite or layered

bodies should have the same boundary points for shared boundaries, as

otherwise a temperature solution involving more than one region would be

very difficult to numerically implement. Figure 2-6 shows that for a

conduction heat transfer problem in the transformed plane there are

always three solution fields. The x and y solution fields are

determined first (which generates the grid), and then on this grid a

solution is obtained for a field equation(s) of interest. Thus, each

nodal coordinate for a specified value of _ and n has at least three
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Figure 2-6: The Three Solution Fields Present for each Region.
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values associated with it: an x coordinate, a y coordinate, and, in the

case shown, a temperature. All of these v61ues at each node must then

be used to obtain temperature mappings in the physical plane.

The coefficients alpha, beta and gamm6 are functions of x and y.

In the final solution to the grid generaticn, there is also a

distribution of these three coefficients t_ roughout the field. Thus,

these coefficients can change in value fror_ point to point. The

physical significance of all the transforn_tion coefficients (including

the Jacobian) is illustrated in Figs. 2-7 through 2-10. Figure 2-7

shows an arbitrary quadrilateral drawn ont< a square grid in the

physical plane. The midpoints of the oppo._ite sides of the edges are

connected, which give essentially an averac_e "length" and "width" of the

quadrilateral. These dimensions are lablec "b" and "a" in Figs. 2-8 and

2-9, respectively. All of the derivatives of x and y with respect to

and n are taken as discrete, constant values through a quadrilateral

along the lengths a and b. It is inherently assumed that the lengths a

and b correspond to lines of constant _ anc[ n from the transformed

plane. The intersection of lines a and b lepresent, then, the

intersection of the lines [ and D for a given point that was part of the

iterated field in the transformed plane.

From reference to Figs. 2-7 through 2-10, it can be seen that the

Jacobian of the transformation is the area of the quadrilateral in the

physical plane. The square root of alpha J s a measure of the average

quadrilateral length along the D direction in the physical plane. The

square root of gamma is a measure of the a,:erage quadrilateral length

along the _ direction in the physical plane. And, finally, beta is a
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measure of the non-orthogonality of the quadrilateral as measured by the

mapping of the [ and D lines on the corresponding cell/quadrilateral in

the physical plane. Thus, the essential dimensions describing the

approximate shape of the quadrilaterals in the physical plane (which are

the square, uniform computational cells in the transformed plane) are

contained within the transformation parameters alpha, beta, gamma and

Jacobian.

Numerical Modelling of Body-Fit Transformation Equations

Solving the transformation equations in the computational plane is

essentially the same as solving any two field equations that are coupled

with Dirichlet boundary conditions. Equations (2-44)* through (2-50)*

show how the two field equations have been discretized. All second

order derivatives are approximated using three point central

differences, and all first order derivatives using two point central

differences. Note that the coupling of the equations occurs through the

transformation coefficients alpha, beta, and gamma. Equations (2-45)

and (2-47) can be solved for x(i,j ) and y(i,j ) to obtain the required

algorithms. Figure 2-11 illustrates a representative portion of the

computational grid that Eqs. (2-44) through (2-50) were solved on,

explaining the indices i and j.

The iteration strategy is to first sweep through the x field,

holding all values of y at the value of the most recent iteration, and

then sweep through the y field, holding all values of x fixed from the

most recent iteration. The values of the transformation coefficients

*Because of their length, these equations are shown on the following

page.
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_" L X " /X _ c_ X

.... 2_ .... + Y Z
(2-44)

s(xi+1,j - 2Xi, j + Xi-l,j

xi+1,j+ I - xi_1,j+1

2

) -2 _ .............

xi+1,j_ I - xi_1,j_ I

2

+ Y (xi,j+ I - 2xi, j + xi,j-1
) = 0

(2-45)

_2 _2 _2
y Y Y

a -_ - 28 .... + "--- = 0

(2-46)

Yi+1,j+1 - _i-I,j+1

a(Yi+1, j _ 2Yi, j + yi_1,j) -2R .............

Yi+1,j-1 - Yi-l,j-1

2

+ Y (Yi,j+1 - 2Yi, j + Yi,j_1 ) = 0

(2-47)

+ =

i,j+1 '_!_

(2-48)

my _y _x _x Yi,j+1 - Yi,j-1

R = .... +

_n _ _n _ 2

Yi+1,j - Yi-l,j

2

+

Xi+l, j - xi_1, j

2

Y = + = ...............
i+I'3 2 i'I'3_

Yi+1,j - Yi-l,j

(2-49)

Z

(2-50)
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Figure 2-11: Grid Index Notation for Solution of Spacial
Transform Algorithms in Transformed Plane
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are updated for each point for every iteration to reflect the most

recent values of x and y, as the sweep thrcugh the field progresses.

This procedure continues until all values cf x and y are settled i.e.,

they no longer change to within some specified error.

Prior to the beginning of the iteration, a linear distribution

between any two opposing boundary values w6s assigned to all the field

points as an initial guess. This not only reduces the needed CPU time,

but also assures that there will be no div_e check errors during the

first sweep of the field. Also, once conwrgence has been achieved, the

values of the transformation parameters fo] the boundary points are

calculated for use in the boundary conditi<_n algorithms. The derivative

values needed are calculated using one-sid,_d differencing. Appendix A

contains a computer listing of the key subroutine written in Fortran.

Verification of the Transformation Code/Alc_orithms

In order to verify the accuracy of th._ coordinate mapping, use will

be made of the fact that an analogy exists between the spacial transform

solution and a solution of a field equatiol that has the same form as

the mapping equations. To make the comparLson, Laplace's equation for

steady state conduction was used:

--- + --- = 0
z z

(2-51)

This equation was solved analytically for the case of two concentric

cylinders having fixed temperatures at the inner and outer surfaces.
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The solution to the problem is well known, and is given in terms of

radial coordinates by

r

In --

r o

T(r) = (Ti-T o) + T o (2-52)

ri
In --

r o

Using this equation the radial location for a specified temperature may

be written

T-T
o

Iril T-T

1 o

r = r o -- (2-53)

r o

For an inner and outer radius value of I and 9 feet, respectively, and

an inner and outer temperature of 400 and 0 degrees Farenheit,

respectively, the locations of the isotherms in 40 degree Farenheit

increments were calculated, and are listed in Table 2-I. Those radius

values for temperature increments of 10 degrees Farenheit are listed in

Table 2-2. From a numerical point of view, these two tables represent

exact values for a fine and coarse mesh. Listed along side these values

are the final results of a spacial transform to map the given circular

cylinder. The output for the mapping on a 41 x 41 grid can be found in

Appendix B, and the output for the 11 x 11 grid in Appendix C. Note

that each coordinate point has an x and y value associated with it.

Knowing that the boundary points were assigned with the region centered

on the origin of an x-y coordinate system, these values can be easily
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converted into an equivalent radial locati_,n. This task is muchsimpler

if values are chosen along the x or y axis The radial locations can

then be picked off directly.

Becausethe generating equations used are Laplacian in form, there

is an exact analogy between the resulting }; and y distributions and the

location of isotherms, where those isother_ are equally spaced (i.e.,

each grid point outward from the inner bou_dary represents an equal drop

in the number of degrees Farenheit). The _ercent error between the two

solutions presented in Tables 2-I and 2-2 ¢_learly shows increased

accuracy with a finer mesh. The error for an 11 x 11 grid drops from a

maximum of 7.13% to a maximum of 0.40% for a 41 x 41 grid. The error,

as would be anticipated, increased with in:reased distance from the

boundary where the temperature is known.
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TABLE2-I ACCURACYOF ITERATEDSPACIALVALUES
CONCENTRIC CIRCLES USING A

41 x 41 GRID

FOR TWO

Is othe rm

Value

(OF)

Analysis Program

Radius Value Radius Value

%

Error

0 9. 0000 9. 0000 0. 0000

I 0 8.5189 8.5155 0.0399

20 8.0636 8.0573 0.0781

30 7.6326 7.6240 0.1126

40 7.2246 7.2141 0.1 453

50 6.8385 6.8263 0.1 784

60 6.4730 6.4596 0.2070

70 6.1 270 6.1127 0.2333

80 5.7995 5.7845 0.2586

90 5.4895 5.4741 0.2805

I00 5.1961 5.1 804 0.3021

110 4.9184 4.9026 0. 3212

120 4.6555 4.6397 0. 3393

130 4.4067 4.3911 0.3540

140 4.1 711 4.1 558 0.3668

1 50 3.9482 3.9333 0.3773

160 3.7371 3.7227 0.3853

170 3.5374 3.5235 0.3929

180 3.3483 3.3350 0.3972

190 3.1 694 3.1 566 0.4038

200 3.0000 2.9878 0.4066

21 0 2. 8396 2.8282 0.4014

220 2. 6878 2.6771 0. 3980

230 2.5442 2.5342 0.3930

240 2.4082 2.3989 0.3861

250 2.2795 2.2709 0.3772

260 2.1 576 2.1 497 0.3661

270 2.0423 2.0351 0.3525

280 I .9331 I .9266 0.3362

290 I .8298 I .8240 0.3169

300 I .7320 I .7268 0.3002

310 I .6394 I .6348 0.2805

320 I .5518 I .5478 0.2577

330 I .4689 I .4655 0.2314

340 I. 3903 I. 3875 0. 2013

350 I. 3160 I. 3137 0.1 747

360 I. 2457 I. 2439 0.1 444

370 1.1791 1.1778 0.1102

380 1.1161 1.1153 0.0716

390 I .0564 I .0560 0.0378

400 I .0000 I .0000 0.0000
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TABLE2-2 ACCURACYOF ITERATEDSPACIALVALUESFORTWO
CONCENTRICCIRCLESUSINGAN11 x 11 GRID

Isotherm
Value
(°F)

Analysis Program %

Radius Value Radius Value Error

0 9. 0000 9. 0000 0. 0000

40 7.2246 7.0175 2.8665

80 5.7995 5.5 137 4.9280

1 20 4.6555 4.3631 6.2807

1 60 3.7371 3.4757 6.9947

200 3.0000 2.7860 7.1 333

240 2.4082 2.2463 6.7228

280 1.9331 1.8211 5.7938

320 I .551 8 I .4!341 4.3626

360 I .2457 I .2154 2.4323

400 1.0000 1.01._00 0.0000
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Since the spacial transform essentially mapsan irregular region

into a collection of quadrilaterals, the distribution of transformation

coefficients can be used as a check on the accuracy of modelling the

entire geometry. Table 2-3 shows this comparison, where the overall

values of thickness, circumference and area of the annulus are

calculated by summing the appropriate coefficient values. The largest

error for both grid sizes is in the approximation of the circumference.

This is to be expected, since the curvature is being approximated by a

series of straight lines. Again, the finer mesh provides a much more

accurate modelling of the geometry. The largest error is reduced from

6.46% to 0.419%. The error in radius for a 41 x 41 grid is slightly

larger than for an 11 x 11 grid. This is attributable to round-off

error, as only single precision was used in the numerical code.

This comparison and verification demonstrates the accuracy of the

spacial transformation subroutine. However, it also points out the

possibility of large errors entering the solution of a field equation if

the grid that is used is not sufficiently fine to accurately model the

region.
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TABLE2-3 ACCURACYOFSPACIALTRANS}ORMBASEDONPHYSICAL
SIGNIFICANCEOFTRANSFORMATIONCOEFFICIENTSCOMPARED
TOACTUALVALUESOFTHER}_GIONIN THEPHYSICALPLANE

Physical
Significance

Radius
(Ro-Ri )

Circumference
(2_Ro )

Area

2 2

(_[Ro-Ri])

Parameter

Actual

Value

Actual

Value

J

Actual

Value

11 x 11 GRID

7.9999

8.0000

52.9006

56.5486

235.1 146

251.3274

0.001%

Error

6.451%

Error

6.450%

Error

41 x 41 Grid

7.9880

8.0000

56.3162

56.5486

250.2978

251.3274

0.025%

Error

0.419%

Error

0.409%

Error
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CHAPTER 3 TRANSFORMATION OF CONDUCTION PROBLEM

Transformation of Governing Conduction Equations

Any field equation solved in the transformed plane containing terms

having a spacial dependency must have those terms transformed in the

same fashion as the spacial coordinates _, q were developed. The form of

the conduction energy equation used in this study is:

OCp .....8t 8x k _ + k + q (3-I)

In the problems considered the thermal properties of the materials are

assumed to be constant; hence, Eq. (3-I) can be rewritten as

-- = k --- + --- + q (3-2)

To transform the above equation, the transformation operator developed

in the previous chapter, Eq. (2-20), is required, i.e.,

where

8z _z I I _z
------+ ------= ----

_x_ _yZ zJ _ _z 8z >
.... 2R .... + 7 (3-3)

(3-4)
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_x _x _y _y

(3-5)

y ----- f3-6)

and d _ ........... (3-7)

Applying Eq. (3-3) to Eq. (3-2) yields:

8T k / 8 ZT _ 2T

0Cp .... _ _ e .... 2 8 .......@t J _2 8_n
+ q (3-8)

This is the transformed energy equation th._t must be solved

in the transformed plane.

Transformation of Boundary Condition E_uatLons

There are two basic methods that can be used for treating an

interfacial boundary condition. One is to equate normal heat fluxes and

the other is to perform an energy balance <_n a control volume that

includes the boundary, i.e.,

k(9?'n)ds + q dv = (0CpT) dv

V

V

(3-9)

For a square of rectangular geometry, applLcation of Eq. (3-9) is

relatively straightforward. An approximatLon of Eq. (3-9) can be

derived without any special treatment of tlue interface, and the

resulting discretized equatio n can be cast into simple algebraic form.
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To apply the above energy balance to a square cell or control

volume in the transformed plane is not as straightforward, however.

Equation (3-9) must undergo the samespacial transformation as

described above. To apply the resulting transformed equation to a

control volume in the computational plane is possible, but the added

complexity makes the task quite prohibitive.

Another way of "visualizing" the task is to apply Eq. (3-9)

directly to a control volume in the physical plane that has been

"unmapped"from the computational plane. Figure 3-I showshow the

resulting cell might appear in the real plane. As can be seen, each

cell around the boundary has a different configuration.

Computationally, customizing Eq. (3-9) to each cell around the boundary

is not easily accomplished, even with a knowledge of the approximate

cell geometry and configuration from the transformation parameters at

each point. Accuracy needs to be preserved to as great an extent as

possible, while maintaining a reasonable degree of computational

simplicity. Thus, Eqs. (2-42) and (2-43), which can be used to equate

normal heat fluxes through a given boundary point along a line of

constant [ or D, shall be used for the boundary conditions between two

adjacent regions.

The boundary conditions for two regions in perfect thermal contact

require that there be equality of temperature and normal heat flux:

TII = T 2 (3-10)

II I

kl

_T 1 _T

-- = k 2 --

8D I I 8n2

(3-11)
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Figure 3-1: A Boundary Contrcl Volume as it Might Appear

in both the Physical and Transformed Planes.
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On the other hand for an exposed surface, energy conducted to the

surface is convected away; therefore,

-k -- = h (T _ T )

_n s s
(3-12)

Since the boundary equations contain normal derivatives that are

functions of space, a transformation operator is required that will

provide an expression for the temperature derivative normal to the

surface at a specified point in the real plane. From Chapter 2, these

are

_n To a line of

constant

t D-- -- 8 --

J yV_-- _n _

(3-13)

-- - _-- -8

8n To a line of J u_-- 8_

constant

(3-14)

On the presumption that the boundary is along the upper or lower edge of

the transformed plane (a line of constant _), Eqs. (3-11) and (3-12)

become, respectively,

I II I

I I 2
(3-15)

(3-16)
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Equations (3-15) and (3-16) are the transfgrmed layer surface boundary

equations that must be solved in the trans[ormed plane.

Numerical Differencing of Conductin_ E_uations

Figure 3-2 shows a section of the gri_ in the transformed plane.

In order to accurately difference the cross-derivative terms in the

diffusion equation, all eight nodes surrounding the node being iterated

for must be involved in the differencing. Applying second order central

differences to all derivatives in Eq. (3-9_ yields

2 DCp k+1 k

Ji,j --- (Ti,j - Ti,j )
k_t

k k k= (I-_) ai, j (TL+i, j - 2Ti, j + Ti_1, j)

8i,j ( k k k k
Ti+1,j+ I - Ti+1,j_ I + Ti_1,j_1 - Ti_1,j+ I )

2

k k k

+ 7i,j (Ti,j+1 - 2Ti,j + Ti,j-1) J

k+1 k+1 k+1+ M ei,j (Ti+1,j - 2Ti,j + Ti-l,j)

_i,j k+1 k+1 _+I k+1

(Ti+1,j+1 - Ti+1,j-1 + Ti-l,j-1 - Ti-1,j+1 I

2 •

k+1 k+1 k+1 _ Ji,j q

+ _i,j (Ti,j+l - 2Ti,j + Ti,j-1_ +
k

(3-17)

It should be noted that a weighting factor M has been used in order that

the algorithm may become anything from purely implicit (M equal to zero)

to purely explicit (M equal to one). When M is equal to 0.5, the

algorithm becomes the Crank-Nicholson scheme. Appendix D contains a
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listing of the subroutine that solves for t!_e conduction problem

utilizing Eq. (3-17).

Upon differencing, the boundary conditLon for equality of normal

heat flux at a solid boundary becomes:

l,s Bi,1 Ti+1,1 - Ti-1,1

ki,s (Ti,2 - Ti, I )

I 7,

l,jmax

ki,jmax (Ti,jma_< - Ti,jmax-1)

Ji ,jmax /7i, j max

upper

Si, j max Ti+ I, j max - Ti_1, jmax

/7 2
Ji ,j max i, j max

lower

(3-18)

The algorithm for a convective boundary condition is similar to

Eq. (3-18), except that the left or right hand side is replaced by

h (T - T ) or h (T - T®), dependirg on whether the convective
1,1 l,jmax

boundary is on the upper or lower surface cf the grid. Appendix E

contains a listing of the subroutine that solves for the normal flux

boundary condition using Eq. (3-18).

Verificatio n of Numerical Modelling

A. One Zone, Steady State

The problem used to verify the algorithm for conduction in a single

layer under steady state conditions is conduction in offset cylinders.

The exact solution to this problem is found in Eckert and Drake [21].

Computed isotherms for a cylinder with an outer radius of 0.3048 meters
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(1.0 feet) held at 37.78 degrees C (100 degrees F), an inner radius of

0.0457 meters (0.15 feet) held at 537.78 degrees C (1000 degrees F), and

an eccentricity of 22.86 millimeters (0.75) feet are shown in Fig. 3-3

(straight line). For a grid consisting of 17 x 17 nodes, the numerical

values are in excellent agreement with the analytical values.

The largest error to be found between any two values was less than 0.1%.

Thirty-seven seconds of computing time was needed to obtain a converged

result on an IBM 4341.

The eccentric cylinder problem was also solved analytically for the

case involving uniform internal heat generation by El-Saden [22]. This

problem was numerically solved for the case where energy was being

uniformly generated at the rate of 20.7 kilojoules per second - cubic

meter (2000 BTU per hour - cubic foot). Figure 3-3 compares the exact

to predicted temperatures on the lines _ = I, _ = 6, and _ = 8. These

coordinate lines represent cuts in the transformed plane at 0, _/2, and

respectively. Again there is excellent agreement, with the maximum

error being less than 0.5 %.

B. Multiple Zones, Steady State

The steady state temperature distribution in four concentric

cylinders was obtained and compared to the elementary analytical

solution for this problem. Table 3-1 lists the parameters used for this

problem.

Table 3-2 presents the predicted temperatures as compared to the

analytical values at three interfaces for various convergence criteria.

The surface temperature of the inner cylinder was held at 1000 degrees
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Layer

I

2

3

4

Inner

Radius

Ri(mm)

1000

8OO

700

5OO

Ou te r

Radius

Ro(mm)

8OO

700

5OO

300

Thermal

Conductivity

k (kJ/hr-m- °C )

155.77

249.23

18.69

93.46

Table 3-I: Parameters Used in the Multiple Zone Steady

State Verification Problem



55

Table 3-2: CodeVerification Result£ - Interface Temperature
Solutions for Concentric Cylinder Problem

Analytical

(°C)

I 00.00

150.69

169.65

806.60

I 000.00

Num. I

(°C)

100.00

173.25

196.0

815.1

I000.00

Num. 2

(°C)

I 00.00

158.3

178.5

809.72

I 000.00

Num. 3

(°C)

100.00

155.6

175.4

808.9

I 000.00

Num.4

(°C)

I 00.00

154.0

173.5

808.4

1000.00

Num.5

(°C)

I 00.00

153.3

I 72.74

808.15

I 000.00

Spatial
Convergence

Temp. Field
Convergence

Boundary

Convergence

CPU Time

IBM 4341

0.0001

0.1

0.1

1:29

0.0001

0.1

0.1

3:31

0,,0001

0.1

0.05

3:52

0.0001

0.1

0.02

3:58

0.0001

0.1

0.01

4:00
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C, while the surface temperature of the outer cylinder was held at 100

degrees C.

The error for the innermost boundary is 2.61 degrees C, for the

middle boundary 3.09 degrees C, and for the outermost boundary 1.55

degrees C. The largest error for numerical solution 5 is less than 1.8

percent. The above solutions were obtained on an 11 x 11 grid for each

layer. Figure 3-4 displays a graphical representation of the numerical

solution. In light of the relatively coarse grid used, the agreement is

excellent.

C. One Zone, Time Dependent

Jakob [23] developed exact solutions for three one-dimensional time

dependent heat conduction problems: for the temperature transients in

an infinitely long square bar; for the temperature transients in an

infinite medium with a circular hole; and for the transient temperature

response of a hollow cylinder within an infinitely thick wall. All

three of these exact solutions were used as a means of establishing the

accuracy for the numerical solution of the time dependent conduction

equation.

The exact solution developed by Jakob for the infinitely long

square bar was for the case where the outer surface was suddenly

subjected to a step change in temperature. Table 3-3 compares the

numerical results, in dimensionless form, with those presented by Jakob.

For the numerical solution, a diffusivity of 0.929 square meters per

hour (10 square feet per hour) was used with a 0.2286 meter square bar.

The temperature field was initially at a uniform value of -12.222
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Table 3-3: Code Verification Results - Center

Temperature Response of an Infinitely

Long Square Bar

_t

z
s

0.032

0.080

0.100

0.160

o

Jakob (23)

I .000

0.951

0.901

0.715

A
o

8i

Numerical

0.998

0.935

0.893

0.711

% error

0.1 26

I .600

0.849

0.530
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degrees C (10 degrees F). Three minutes an_ fifty seconds of CPUtime

on a NAS6650 was required to produce the results on a 17 x 17 grid,

with convergence on space of 0.00001 and on temperature of 0.001.

Convergencewas defined as the absolute value of a simple difference of

the old and new iterated values.

The exact solution for the case where there was a step change in

temperature at the surface of a circular hcle in an infinite mediumwas

also solved by Jakob. Obviously, it is not possible for the present

computer code to simulate an infinite medium. To approximate this case,

concentric cylinders were used with an out6r radius of 3.048 meters

(10.0 feet) and an inner radius of 0.3048 meters (1.0 foot). The

numerical solution will be valid up to the point where the initial

thermal wave reaches the outer boundary. ]!'or the numerical problem, a

diffusivity of 0.9290 square meters per ho_:r (10.0 square feet per hour)

was used. The field was initially set at 137.78 degrees C (100 degrees

F), and the surface of the hole was suddenLy raised and maintained at

537.78 degrees C (1000 degrees F). The re_ults obtained are displayed

in Table 3-4. One minute and 57 seconds o!! CPU time on a NAS 6650 was

required using an 11 x 11 grid with tolera:_ce on space of 0.001 and on

temperature of 0.01. Convergence was defined as the absolute value of a

simple difference of the old and new iterated values. Note that even

with the relatively coarse mesh and loose tolerances (as compared to the

previous problem) for this single region problem, there is excellent

agreement with the analytical results.

The exact solution for the transient temperature response for a

hollow cylinder within an infinitely thick wall was solved for the case
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Table 3-4: Code Verification Results - Heat

Flux at Surface of a Circular

Hole in an Infinite Medium

st

s

0.01

0.1

0.6

1.0

2.0

3.0

qs

--_mw

kL 8 s

Jakob (23)

38.51

14.13

7.29

6.18

5.03

4.49

qs

kL 8 s

Numerical

38.79

14.53

7.40

6.28

5.13

4.61

% error

-0.72

-2.83

-I .53

-I .61

-2.00

-2.00
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with the cylinder having a 1.0 foot radiu'_. To approximate the infinite

plate, two concentric cylinders were used with the outer radius set at

I0.0 feet. The numerical solution should be unaffected by this false

outer boundary up to the point where the _ nitial thermal wave reaches

the outer boundary. The thermal diffusivJty used was 10.0 square feet

per hour. The temperature of the plate w_s initially set at 100 degrees

Farenheit, with the temperature of the inter radius wall suddenly raised

to 1000.0 degrees Farenheit at time equal to zero. Figure 3-5 compares

the predicted temperature just inside the hole to the exact value

presented in Jakob. The computed values 6_re for an 11 x 11 grid with a

time step of 0.001 hours. Approximately two minutes of computing time

were needed to advance the problem 1000 time steps on an IBM 4341.

Considering the coarsness of the mesh usec, the results are

outstanding.

D. Two Zones, Time Dependent

Jaeger [24] developed an analytical solution for the time dependent

temperature distribution in a two-layered circular cylinder. The two

concentric layers were in perfect contact and had different thermal

properties. Initially the temperature throughout both layers is

uniform. At some instance in time, the ironer surface of the inner layer

is subjected to a step change in temperature. The temperature of the

external surface of the outer layer is held at the initial temperature.

Jaeger did not consider internal heat generation in the solution.

The closed form solution presented by Jaeger is somewhat tedious to

apply. It involves a series solution that necessitates the use of
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eigenvalues. The eigenvalues needed are the roots of a somewhat complex

algebraic statement containing Bessel func:ions. Berger [25] developed

a computer program that numerically implem,_nts the closed form solution

developed by Jaeger. Berger's program was run for a case solved by the

transformed time dependent conduction equa!:ion. This comparison is thus

a check for the time dependent algorithm a_d boundary condition

algorithm for two thermally dissimilar layers.

For the problem solved, the inner cir:zular layer had a conductivity

of 0.2014 x 10- BTU per inch-second-degree F, a diffusivity of 0.4

square inches per second, an inner radius )f 2.0 inches and an outer

radius of 5.0 inches. The outer layer had a conductivity of

0.3278 x 10- BTU per inch-second-degree F, a diffusivity of 0.2 square

inches per second, an inner radius of 5.0 inches and an outer radius of

9.0 inches. The initial temperature was 100 degrees F, with the

internal surface of the inner layer being suddenly raised and maintained

at 1000 degrees. These particular properties were chosen to duplicate a

problem solved by Berger.

Table 3-5 shows a comparison of the _emperature rise with time at

the interface of the two circular layers. Two comparisons are shown,

one with both layers being represented by an 11 x 11 grid, and one with

both layers being represented by a 31 x 3 grid. As can be seen, when

both layers are represented by the finer c[rid, the agreement is

excellent, with a maximum error of 3.08 p0_rcent occurring 3.5 seconds

into the problem. The error decreases wi::h additional time into the

problem because the rapid temperature inc:eases begin to slow down, as

the problem advances toward the steady state solution. It should be
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Table 3-5: ComparisonBetweenExact and
of the Interface Temperature

with Two Layers

Numerical Solutions

of a Circular Cylinder

Time

(sec)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

6.0

7.0

8.0

Interface Temperature

(OF)

Exact

I00.00

1 00.00

100.75

105.91

117.11

133.03

151.87

172.24

193.22

214.25

234.96

274.75

311.88

346.25

11 x 11

Grid

in each

layer

I00.00

I 00.11

103.06

113.22

130.11

151.27

174.57

198.62

222.62

246.11

268.83

311.61

350.72

386.41

%

Error

0.00

0.11

2.29

6.90

11.10

13.71

14.95

15.32

15.22

14.87

14.42

13.42

12.45

11.60

31 x 31

Grid

in each

layer

100.00

100.01

1 01.05

107.18

119.63

1 36.70

156.47

1 77.54

199.03

220.39

241.34

281.33

318.44

352.67

%

Error

0.00

0.01

0.30

I .20

2.15

2.76

3.03

3.08

3.01

2.87

2.72

2.39

2.10

1.85
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noted that although a coarse 11 x 11 grid w_s adequate to determine the

transient response of a single layered circular cylinder, the grid is

too coarse to provide accurate results with the addition of a second

layer; a considerably finer grid is require_l. This problem can become

worse as additional layers are added, requi ing finer and finer meshes

to provide acceptable accuracies. It shoull also be noted that the

interface in this problem is near the center of the two fixed

temperature boundaries. Thus the errors at this location represent the

maximum errors in the solution fields at a given instant in time.

E. Multiple Zones, Time Dependent

No closed form solutions have been found in the open literature for

treating a time-dependent problem of a bod3 with three or more layers

which also contains a heat source. However, numerical solutions to such

problems exist and these can be used for co,de verification.

Stallabrass [2], Baliga [4], Marano [ i], and Chao [7], using

different numerical approaches, have each iolved a one-dimensional

time-dependent problem of a six layered sl_b with one of the layers

generating heat. Table 3-6 lists the dimensions, materials and

properties of the six layers used to verify the present code. Figure

3-6 presents the results of computations for a time step of 0.001

seconds with a grid having 14 nodes in th_ 75S-T6 aluminum, 4 nodes in

the heater, 7 nodes in the upper insulation, 9 nodes in the stainless

steel and 33 nodes in the ice. It can be seen that the predictions are

in good agreement with results reported e,_rlier.

It should be noted that to model thi:_ series of stacked slabs, the

present code used a set of concentric cir:ular layers with the inner
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Table 3-6: Materials and Properties Used in The Multiple
Zone, Time Dependent, Verification Problem

Layer

4

5

6

Material

75S-T6
Aluminum

Epoxy/glass
Insulation

Nichrome
heater

Epoxy/glass
Insulation

304 Stainless
Steel

Ice

Thickness
(mm)

2.210

I .270

0.012

0.254

0.305

6.350

Thermal

Diff_zsivity

m /hr

0.15329

0.00081

0.01 282

0.00081

0.01394

0.00413
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layer having a large radius. Some of the small discrepancies in the

computed results are believed to be due to these geometrical effects.

The computational time needed to obtain convergent results on a NAS 6650

varied from two to ten minutes depending on the particular problem

considered. To obtain the results shown, minimum tolerances of 0.00001

on space and 0.0001 on temperature were required. Convergence was

defined as the absolute value of a simple difference of the old and new

iterated values.
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CHAPTER 4 TRANSFORMATION OF PHASE CHANGE PROBLEM

Overview of Phase Change Treatments

Solutions to phase change problems have long been a topic of study

in the technical community. The characteristic feature of any phase

change problem is the coupling of two temperature fields with a moving

boundary that not only separates the two fields, but propagates through

them. The propagating phase front makes the problem non-linear. Latent

heat effects and changes in thermal conductixity between phases increase

the non-linearity. Because of the non-linearity problem, only a few

exact solutions have been developed, and the_e are for very restrictive

conditions.

Neumann's exact solution to this probler_, presented in Carslaw and

Jaeger [26], was the first known successful _;olution of a phase change

problem. Neumann solved the problem for one dimensional phase change in

a semi-infinite region. The material was in tially at or above the

fusion temperature, and suddenly experiences a step decrease in

temperature at the boundary.

Lin [27] has modified Neumann's developnent to obtain an exact

solution for a quasi one-dimensional problem in a region with a varying

cross-sectional area. To incorporate varyinj areas into the analysis,

Lin simplified Neumann's approach by assuming that the entire region

was at the fusion temperature, and by develcping the relevant equations

to solve for the interface velocity as a furction of time. These
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simplifications readily permitted the insertion of a transformed

position coordinate functio into the governing equations.

Cho and Sunderland [28] have extended Neumann'sexact solution to

allow for variable thermal conductivity in both phases. It was assumed

that the conductivity varied linearly with temperature. The effect of

the phase change speed with conductivity variation was investigated in

somedetail.

Solution of the classical phase changeproblem, as described above,

involves the calculation of the phase front for specified boundary

conditions. This problem mayalso be solved by prescribing the location

of the phase front as a function of time, and then determining the

boundary conditions needed as a function of time to produce the

specified phase front movement. This is knownas the inverse problem.

Rubinsky and Shitzer [29] have developed the exact solution to the

one-dimensional inverse problem for any arbitrary function describing

the movement of the phase front. Previous solutions to the inverse

problem were for a specific function.

Gutman [30] has constructed an approximate analytical

one-dimensional solution that attempts to account for the effect of

superheating or supercooling on the movement of the phase change front.

The resulting analytical form was found by matching the inner and outer

solutions to the problem. His method provides accurate results for a

very limited range of relevant dimensionless parameters.
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To date, there have been no exact sol_itions developed for phase

change problems where the phase change fro_t is a function of two space

coordinates.

Effort has been devoted recently towa'ds the obtaining of

analytical solutions by approximate method_. Ku and Chan [31] have

developed an artificial initial condition ::hat accounts for the

temperature profile discontinuity at the p_ase change front. The

artificial condition permits solutions to :he resulting phase change

equations by using inverse Laplace transfo'ms. Depending upon which

side of the phase front line the artificial initial condition is

applied, a temperature distribution solution can only be obtained for

one of the two phases. The technique has :lot been used to solve a

two-dimensional problem as yet, but the an ilytical results applied to

one-dimensional problems compare well with existing solutions.

Zhang, Weinbaum and Jiji [32] have deJeloped an approximate

analytical solution to a three-dimensional time dependant phase change

problem. The solutions are limited to ver{ small Stefan numbers.

Results are presented for a buried pipe exlmple. They combine a

quasi-steady approximation with a virtual i!ree surface method to obtain

an axisymmetric solution for the region ar:_und the pipe wall.

Singularities in the differential equationi_ along the pipe would not

permit solutions close to the pipe wall.

The analytical and approximate analytical solutions described

above result from the solution of partial _ifferential equations.

There is another class of approximate techniques that are based on an

integral formulation of a heat balance acr>ss the melt line. One of the
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earliest published works using this approach was by Goodman[33].

Goodmandeveloped a numberof approximate solutions for the

one-dimensional problem for typical boundary conditions. Results were

found to comparewell with existing solutions when the assumed

temperature profile was a quadratic function.

More recently, Wangand Perry [34] have applied this technique to a

one-dimensional problem with initial superheat. This problem is

somewhatmore involved, as there are two interfaces, one for the phase

change front and one for the superheat line. Excellent agreementwas

obtained between the approximate solutions and a one-dimensional finite

element code constructed to duplicate the problem studied.

Virtually all of the available analytical models, whether exact or

approximate, are sufficiently complex so that in most cases an alternate

procedure must be adopted. This, coupled with the fact that most of the

analytical models have demonstrated accuracy only for one-dimensional

problems, strongly indicates that any feasible two-dimensional solution

must be sought by alternative means.

Because of the nature of the phase change problem, the obvious

approach to take is a numerical implementation. By this method,

generally a fixed, uniform grid is laid over the problem domain. Three

equations are written. Two of these are conduction equations, one for

each phase. The third equation is an energy balance, incorporating any

latent heat effect, written across the phase change front. This

equation ties together the two conduction equations. The advantage to

this formulation is that the conduction equations have smooth,

continuous derivatives of all primative variables in their respective
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domains. This obviously enhances the likel:hood of a stable,

convergent numerical scheme. The primary d_sadvantage is in the

interpolation required at the phase front. As the problem advances, for

each increment of time, the phase front mus_ be relocated. In most

instances the front will be between node po: nts. The diffusion

algorithms near the phase front then need t._ incorporate derivatives

using the appropriate "shortened" lengths. Because of the numerous

interpolation calculations required, the conputer codes are somewhat

slow. Most of the current work using this ._pproach is in the direction

of developing faster diffusion algorithms, _r making assumptions about

the thermophysics of the problem in order t_ reduce the number of

interpolative calculations. Lazaridis [35] for example, obtained

two-dimensional solutions by treating the m_tion of the fusion front as

quasi-one-dimensional. Thus, the temperatu:_e gradients need be taken in

one direction only. This substantially reduces the number of

interpolations needed. What is more, the r_sults show satisfactory

agreement with existing solutions.

More recently, finite element methods !_ave been used to solve the

moving phase front problem on a fixed grid. O'Neill [36] developed an

algorithm that can be used with standard finite element heat conduction

codes, using linear interpolation to locate the phase front within

elements. Yu and Rubinsky [37] have treate_ the two relevant conduction

equations and the interfacial energy equation as independent governing

equations on a finite element mesh. The re_ults of their computer

solutions agree well with other closed form solutions.

But even the finite element codes tend to be somewhat punitive with

respect to code execution time, because of the interpolation/iterations
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needed to track the moving melt front. Thus, numerical techniques have

been developed that have attempted to either circumvent, or completely

eliminate, the need for the interpolation caused by the phase front.

Numerical researchers have developed a numberof ways of

circumventing the need for interpolation. These methods essentially

involve adapting the grid to the moving melt front. Prusa and Yao [38]

have solved a two-dimensional phase change problem of melting

around a horizontal cylinder. The problem is solved numerically in

cylindrical coordinates, using a radial spacial transform in the

governing equations that essentially "stretches" or "contracts" the grid

on either side of the phase front. The diffusion equations are then

applied to the "stretched" regions. Duda, et al., [39] present a

similar technique, calling it boundary immobilization. They also use a

stretching transformation, but in their analysis the location of the

phase front in transformed coordinates remains at a fixed location.

The effect, however, is essentially the same. The regions on either

side of the phase front are "stretched" or "contracted" to generate the

prescribed regions in transformed coordinates.

Rieger, Projahn and Beer [18] custom fit a grid by use of a body

fitted coordinate transformation. As the phase front moves with each

time step, a new grid is numerically generated using the phase front as

the upper boundary of one region and the lower boundary of the second

region. They also solve the problem of melting around a heated

horizontal cylinder.

Lynch [40] uses essentially the same strategy as Reiger, Projahn

and Beer [18], but applies a finite element mesh generator instead of a

body fitted coordinate transform.
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Although grid adaption eliminates the need for interpolation,

additional calculations are required to generate the new grid (or

function for the "stretching" transformaticn). The latter tends to

offset the gains madeby the former. Numerical techniques that

eliminate the need to solve for the location of the phase front

eliminate the need for not only interpolation, but also calculations for

adapting the grid, since a rigid, uniform _esh can be used. In order to

eliminate the need for any calculations fo_ the location of the phase

front, the equations that govern the syster need to be reformulated.

The reformulation, depending upon the strategy used, may result in the

insertion of an additional approximation i;_to the governing equations.

Kikuchi and Ichikawa [41] introduce a special integral

transformation that accounts for the discontinuity of the temperature

gradient caused by the phase change front, even though the location of

the front is unknown. This special integr_l transformation is known as

the freezing index. The equations used fo:: iterating through the

temperature fields are developed by applyi%g the freezing index integral

to the original set of governing equations. The algebraic set of

equations needed are obtained by discretizLng the associated variational

form of the freezing index. Blanchard and Fremond [42] use a strategy

similar to Kikuchi and Ichikawa, except that they use the homographic

approximation to model the temperature discontinuity caused by the phase

front. In doing this they solve for a vaziational equality, instead of

the variational inequality solved by Kikuchi and Ichikawa. The primary

advantage to the homographic insertion is that the originally
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non-differentiable change of temperature across the phase front becomes

differentiable.

In the heat conduction equation, temperature is usually considered

the dependent variable, with time and space coordinates the independent

variables. By an appropriate transformation of the conduction

equations, however, one of the space coordinates can becomethe

dependent variable, with temperature, time, and any remaining space

coordinates the independent variables. By specifying values of time,

temperature and one space coordinate (in a two-dimensional problem), the

values of the independent space coordinate can be iterated for. By

always specifying the samevalue of temperature at each time step, the

movement, or migration, of an isotherm with time can be tracked. Thus,

this technique is called the isotherm migration method. Crank and Gupta

[43] were the first to apply this technique to a phase changeproblem in

two dimensions. The advantages of this technique, in tracking a moving

isotherm at the fusion temperature, are obvious. Results predicted by

this approach have been found to be satisfactory, provided two numerical

idiosyncracies caused by the technique are circumvented. First, an

approximate method is used to calculate the position of the phase front

for a short initial time into the problem. After the initial time

interval, with an established isotherm, the isotherm migration algorithm

can be used. Secondly, depending upon the geometry and/or the

thermophysics of the problem involved, the independent space coordinate

can becomea multi-valued solution to the algorithm containing the

dependent variables, where it is inappropriate.
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Saitoh [44] extended the two-dimensional isotherm migration method

from regular two-dimensional geometries to arbitrarily shaped, doubly

connected two-dimensional geometries. Thi_ was accomplished by applying

the sameradial "stretching" transformation: as used by Prusa and Yao

[38] to the governing equations before exc]:anging the dependent and

independent variables. The numerical resu!ts obtained by this method

showedexcellent agreement with experiment_Ll data.

Ozisik [45] discusses the use of a mo_ing heat source in the

conduction equations to account for the latent heat effect. He presents

a mathematical development that explicitly casts the moving boundary

problem into a standard heat conduction problem with a moving heat

source. By doing this, the solution can irlmediatedly be written in

terms of Green's function, and numerically implemented.

Another technique for eliminating the necessity of locating the

phase front, is use of the so-called high _eat capacity method. In this

method, the latent heat effect of the phase change is approximated by a

large heat capacity over a small temperature range. This technique has

been in existence for a number of years, arLd has recently undergone

further development into more sophisticatec algorithms and applications.

Bonacina, et al. [46] have developed a three-time level implicit scheme

using the approach. The temperature depenc!ent properties are evaluated

only at the intermediate time step, thus simplifying the solution to the

algorithms. The scheme was found to be unconditionally stable and

convergent.

Comini, et al. [47] present a similar analysis to the one above,

but for a finite element code using triangular elements, so that
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irregular geometries could be accomodated. Morgan, Lewis and

Zienkiewicz [48] have improved this code by applying the technique with

quadratic isoparametric finite elements.

Hsiao [49] modified the manner in which the specific heat was

calculated. Heaccounts for the latent heat, and determined the

physical conditions of the node, by using a linear interpolation of the

surrounding nodal temperatures. Using this linear interpolation,

excellent results are obtained for both one and two-dimensional phase

change problems with relatively large time steps and coarse mesh.

Uchikawa and Takeda [50] have applied the high specific heat method

to the irregular geometry of a casting mold. In this analysis a

transform is used to turn the irregular regions into regular, evenly

spaced computational zones through the use of a body fitted coordinate

procedure. The governing equations, with the high specific heat method,

are then transformed and solved in the transformed plane.

Oneof the more recent techniques for eliminating the need to

calculate the location of the phase front is the enthalpy method. In

this method, the specific heat is combinedwith temperature to form an

enthalpy variable in the time dependent term in the diffusion equation.

Thus, both temperature and enthalpy are dependent variables. All of the

earlier two-dimensional models using this technique assumedthat the

curve relating enthaIpy to temperature had a finite slope. This is only

true, however, for materials that undergo a change of phase over a

temperature range. Shamsundarand Sparrow [51] have developed a

variation to the earlier two-dimensional models. Depending upon both

the temperature and the enthalpy of a given node, either temperature or
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enthalpy is the dependent variable. Whent]_e condition of a node is

such that a single phase exists, temperatur,: is the dependent variable.

Whenthe enthalpy of a given node is betwee_ the values of either phase

(a change of phase is occurring), the tempe$arure is known, making

enthalpy the dependent variable. This appr>ach easily permits solutions

for substances whose change of phase occurs entirely at a single

temperature, as well as for those whose change of phase occurs over a

range of temperatures. Shamsundar and Sparrow use an implicit finite

difference scheme to numerically implement the governing equations.

They apply the technique to PCM, a type of wax, that has relatively

little change in thermal conductivities between phases.

Crowley [52] applies an explicit finite difference scheme to an

enthalpy formulation that is equivalent to that of Shamsundar and

Sparrow. Crowley applies his algorithm to the solution of Saitoh's

problem [44], with water as the phase chan je substance. Even with the

large difference in thermal conductivities that water exhibits, the

numerical results agreed well with publish_._d experlmental data for the

problem.

One of the drawbacks of the enthalpy formulation, particularly for

the case where the change of phase occurs at a single temperature, is

that a plot of temperature against time fcr a given node tends to

exhibit a "plateauing" effect or tendency. This arises out of the fact

that a computational grid models or repre_ents a discrete region in

space. Obviously, it requires a finite amount of time to melt a

discrete region. As a consequence of a n.,de being held fixed at a

single temperature for a discrete amount _f time, the effect is also
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felt by the surrounding nodes, causing a plateauing of the temperature.

Voller and Cross [53] developed a smoothing technique that can be

applied to a final set of numerical results. This smoothing technique

has the effect of bringing the time-temperature history of a given node

into excellent agreement with other published results.

Schneider and Raw [54] have developed a modified enthalpy model

that is capable of efficiently solving problems where multiple phase

change interfaces exist. For these types of problems their modification

reduces computational times by an order of magnitude. Thus, the

implicit scheme used here is only applied to one-dimensional problems,

but they indicate that it can be easily extended into two dimensions.

Voller [55] provides an alternate method of discretizing the

enthalpy formulation. In this approach, the sensible and latent

heat terms are discretized separately, thus isolating the non-linearity

of the problem as a nodal latent heat source term. His implicit

finite-difference scheme yields computational savings of twenty to fifty

percent.

Tacke [56] has developed a formulation of the enthalpy method which

removes the "plateauing" effect in the time-temperature history of a

node. This was accomplished by applying linearized temperature profiles

near the phase front for those nodal control volumes containing the

front. His numerical solutions substantially reduced the plateauing,

while showing excellent agreement with analytical solutions. The

linearization does increase the computational time required, but only

slightly.
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Recently, Schneider [57] has used the enthalpy form of the energy

equation, and, in the melted liquid region, coupled it with the momentum

equation to account for the effect of free convection effects on the

movement of the phase front line. The pro_ lem is solved in a

rectangular region, with a rise in temperature occurring at only one

vertical wall. Boucheron and Smith [58] h6ve solved essentially the

same problem, but they couple the momentum equation throughout the field

for both phases. They specify for the solid phase a very high value of

viscosity in order to insure that the velo<ities arising from the

solution of the momentum equations in this region are negligible or

zero. This approach allows a more mathematically straightforward

treatment of the phase front.

Because of the relative ease of formu ation, simplicity in

numerically discretizing the resulting equ_tions, and proven accuracy

and stability, the enthalpy formulation wa_ selected to solve the phase

change portion of the current problem. Th._ irregular region is mapped

into a rectangle using a body fitted coord hate spacial transform. The

governing equations must be similarly transformed, and solved on the

transformed grid. Writing a general "nume_ical" energy balance in the

transformed plane is virtually impossible. As was discussed in the

previous chapter, the square, regular compJtational cells in the

computational or transformed plane unmap i_to nonuniform, non-orthogonal

cells of varying area in the physical plan_. Consequently, the

transformed partial differential field equations were differenced rather

than developed by conservative principles. Because thermal conductivity

is not a constant for this problem, there {re two possible forms of the
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field equation, the conservative form and the non-conservative form,

which are mathematically equivalent. Whentreated numerically in the

same fashion, the result will be two algorithms that are not equivalent.

The rationale for selecting the equations type is the topic of the next

section.

Importance of Equations Type - Neumann Comparison

Since the energy balance at the phase change front is essentially

"buried" in the weak formulation of the phase change equations, the

discretized form of these equations can become important for an accurate

solution. One important distinction in equation form is conservative

versus non-conservative. The term "conservative" means that the

"purest" form of an equation is preserved or "conserved"; while

non-conservative means that some change has been made to the "pure" form

(i.e., differential operators have been carried through, etc.). This

difference in form for the enthalpy formulation is shown in detail

below.

Figure 4-I depicts the two zones that need to be considered in the

traditional formulation of a phase change problem. The equations that

apply, if only thermal conduction with no density change is considered,

are:

in liquid OLC L ...... kL + -- k L - (4-I)

region _t _x _y

in solid DsCs ...... ks s + k s - (4-2)

region at _x
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Solid

Melt Line
(mush_ zone)

Liquid I
Figure 4-i The Two Zones r,eeded in the

Traditional Fo_'mulation of
the Phase Chan_ie Problem
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on f(x,y,t)=0

_T s _TL

k s .... k L .... DsVn I (4-3

Ti(x,y,t) = Tf i = s and L (4-4

where n = outward normal to the interface, into

the liquid

V n = velocity of the interface in the normal
direction

f(x,y,t) = function describing the interface

separating the solid and liquid regions

The above two field equations, coupled by an interfacial energy

balance, Eq. (4-3), can be reduced to a single non-linear field equation

that eliminates the need for any computation of the location of the

phase front. This is known as the weak formulation, and for phase

change problems is called the enthalpy formulation. The term "weak

formulation" means that less direct information is provided in the

solution of the equations (in this case, the location of the phase

change line). Thus, the weak formulation for this problem becomes:

..... k + -- k --

_t _x _ _y

when H < Hsm ,

and k = k s ;

H

T _- ---

DC s

(4-5)

(4-6)

when

and

Hsm ( H _ HLm , T = T m

k = k s + (k L - k s )

H-Hsm

HLm-Hsm

(4-7)
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HLm-H
and when H > HLm, T = Tm -, (4-8)

PCL

and k = kL .

The above set of equations is muchmore east ly treated computationally

than the previous set. The location of the melt line can be determined

indirectly from the distribution of enthalp, es on the solution domain.

Equation (4-5) is written in the conservative form. If the

operators are carried through, Eqs. (4-5) b_comes

_H _ZT _ZT _k _T 8k _T
O -- = k --- + k --- + + (4-9)

_t _xz _yz _x _x _y _y

and is now cast in a non-conservative form.

Written for the one-dimensional case, _k_s.(4-5) and (4-9) become,

respectively

_t @x

(4-10)

_H _ZT _k BT

O-- =k --- +
z

_t Bx _x _x

(4-1 1 )

If a simple explicit differencing procedure is applied per the

general one-dimensional grid depicted by Fi]. (4-2), Eqs. 4-10 and 4-11

become

k+1 k+1

p .= (Tj+I - Tj )
At (Ax ) 2 2

(4-12)

k+l k+1

kj + kj-1 k+1 k+l )(Tj - Tj- I )
2
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j + 1

J

Figure 4-2 General Grid Used for One-Dimensional
Explicit Differencing
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I Hk+1 - Hk I I I k+1At (gx ) 2 kj

k+ I k* I k+ I

(Tj+ I - 2Tj + Tj_ I)

k+1 k+1 k+1 k+1

(kj+ I - kj_14)(Tj+1 - Tj-I) )

(4-13)

where the superscript k denotes the time step and the subscript j the

nodal location. The algorithms obtained b} _ using Eqs. (4-12) and (4-13)

are clearly not equal to each other since thermal conducting varies as

the phase changes. Error is introduced into any mathematical system

when that system is numerically discretized. The errors introduced by

the algebraic expressions in Eqs. (4-12) and (4-13) are obviously

different, with one contributing potentially more error than the other.

As the difference between conductivit> increases between phases, so

does the potential disparity between Eqs. 4-12 and 4-13, especially for

a computation with a node undergoing a change of phase. For this case

the melting node would be bounded by at least one all liqu;d node and at

least one all solid node. It should be noted that for constant

conductivity between phases, Eqs. (4-12) and (4-13) reduce to

identically the same algorithm. The problem arises only with a change

in conductivity with phase in the discretized equations.

It should also be mentioned that in the traditional formulation for

phase change, this problem cannot occur, regardless of whether the

conservative or non-conservative form of the equations are differenced,

since conductivity is constant in a given zone. The problem arises in

the weak formulation of the equations where the location of the

discontinuity is "buried" within the field equation.
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Equations (4-12) and 4-13 can be checked for accuracy by comparison

with an approximate analytical solution developed by Neumannand

presented in Lunardini [59].

Figure 4-3 depicts the problem solved by Neumann. The problem can be

formulated as:

ZTs I _Ts

_xz % _t

(4-14)

ZT L I _T L

_x _ _ _t
(4-15)

Limit
(TL) = T_ (4-16)

X _

at the interface

Ts (0,t) = Tsurfac e

where Tsurfac e > Tf

T s (x,t) = T L (x,t) = Tf

(4-17)

(4-18)

and

_T s aTL _x

k s .... k L .... pl -- (4-19)
_x _x _t

In the solution of Eqs. (4-14) through (4-19), if the initial

temperature of the liquid is Tf, and the melt distance into the problem

is small, the solution can be approximated by:

.% / 2k s (Tf -Tsurface) t
X

V (4-20)

Tables 4-I and 4-2 show in detail the numerical computations for

solving the one-dimensional phase change problem using the explicit
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x = o x = x(t)

Figure 4-3 Schematic for the Phas_ Change Problem
Solved by Neumann
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EXPLICIT ALGORITHM FOR I-D CONSERVATIVE EQUATION:

k k +, K
Hk+l : Hk at j+l Kj k k

+ _ [ 2 (Tj+l'Tj

kk+k k . (Tk Tk
J J-i ' j" j-1 )]

TIME Hk aH Hk+l Kk Kk+1
i i

sec. BTU/lbm BUT/hr-ft-°F

0.0 0.00 0.00 0.00 1.4160 1,4160

0.I 0.00 26.04 26.04 1.4160 1.2164

0,2 26,04 23.05 49,09 1.2164 1.0398

0.3 49.09 20.39 69.48 1.0398 0.8834

0.4 69,48 18.05 87.53 0.8834 0.7450

0.5 87.53 15.98 103.51 0.7450 0.6227

0.6 103.51 14.14 117.65 0.6227 0.5143

0,7 117.65 12.51 130.16 0.5143 0.4184

0.8 130.16 11.08 141.24 0.4184 0.3335

0.9 141.24 9.80 151.04 0.3335 0.3200

Melt Time for this Node Per

the Neumann Solution: 0.7456 sec.

Error (using interpolated time): 7.37%

Table 4-1 Numerical Computation for the Conservatively
Differenced Phase Change Equation
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EXPLICIT

Hk+l

ALGORITHMFORI-D NON-COI_SERVATIVEEQUATION

: Hk At kk k 2T_+T_i)+ _ [ j (Tj+I"

kk kk k Tk
( j- j.I)(Tj+ I- j-I )

+ 4 ' ]

Time Hk aH Hk+l Kk Kk+1

(sec) (BTU/Ibm) (BTU/hr-ft-°F)

0.0 0.00 0.00 0.00 1.4160 1.4160

0.I 0.00 34.26 34,26 1.4160 1.1534

0.2 34.26 26.38 60.64 1.4160 0.9512

0.3 60.64 20,31 80.95 0.9512 0.7955

0.4 80.95 15.64 96,69 0.7955 0.6567

0.5 96.59 12.05 108.64 0.6567 0.5833

0.6 108.64 9.28 117.92 0.5833 0.5122

0.7 117.92 7.15 125.07 0.5122 0.4574

0.8 125.07 5.50 130.57 0.4574 0.4153

0.9 130.57 4.23 134.80 0.4153 0.3828

1.0 134,80 3.26 138.06 0.3828 0.3578

I.i 138.06 2.52 140.58 0.3578 0.3386

1.2 140.58 1.92 142.50 0,3586 0,3238

1.3 142.50 1.49 143.99 0.3238 0.3200

the

Error

Melt Time for this Node per

Neumann Solution: C.7456 sec.

(using interpolated time): 74.35%

Figure 4-2 Numerical Computatio,_s for the Non-Conservatively
Differenced Phase Change Equation
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conservative and non-conservative algorithms. The calculations are

performed for water as the phase change substance, and are done to

determine the required melt time for the first node only. Figure 4-4

provides a schematic of the problem solved. Tables 4-I and 4-2 provide

further insight into the nature of the numerical error that is

introduced into the solution.

For the algorithm based on the conservative form, the heat flux

must be written at each edge of the node. To estimate the thermal

conductivity at the node edge, the average is taken of the

conductivities of the two nodes having a common edge. The conductivity

of the node "j" is determined by a linear interpolation between the

solid and liquid conductivities, depending on the percentage of the node

that has melted. For the algorithm based on the non-conservative form,

no averaging is needed since the first order derivatives are evaluated

based on values of the two adjacent nodes, which never change until the

,,jth. node needs to be updated, depending on the percent of the node

that has melted.

As the node "warms up" and melts, both solutions track each other

with good agreement. The solutions begin to diverge, however, during

the melting of the last third of the node. The non-conservative

differencing underpredicts the heat flux entering node "j". Clearly,

approximating the conductivity derivative, or, the change of

conductivity through three nodes, is less accurately modelled in

non-conservative differencing. Averaging the conductivities between

nodes for the edge, and using these averages in a flux derivative, is a

much better numerical approximation. Note that the relative error
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Sol id

j+l O i
Mel t

JO q.

Liquid|

k.olid : 1.416 BTU/hr-ft-OF

T = 32°F

k < k < k1.:olid- - iquid

T:T m

kqlquid = 0.320 BTU/hr-ft-°F

Triode = Tm + 30°F @ t = 0

Figure 4-4: Schematic, with Properties, of One-Dimensional
Grid Used to Obtain Solutions Presented in Tables
4-I and 4-2,
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between the two methods, just in a first node calculation for this crude

discretization, differ by an order of magnitude. Using a smaller mesh

or finer time step does not improve the approximation appreciably.

Figures 4-5 and 4-6 show the numerical results of Eqs. (4-10) and

(4-11) for a Neumann class of problems. The solutions plot the movement

of a melt front with time. At the start of the problem, all the nodes

are solid and at the fusion temperature. Suddenly, one edge of the

region experiences a step change in temperature, and is held constant at

that temperature. The substance under consideration is water, which has

a difference in conductivity between the two phases of approximately a

factor of four. Solutions are plotted for step changes in the edge

temperature of 10, 20, 30, 40 and 50 degrees Farenheit above the fusion

temperature.

For this problem, which solves for the melt front passing through a

number of nodes into the grid, the Crank-Nicholson implicit

finite-difference scheme was employed in the numerical implementation of

Eqs. (4-10) and (4-11). This scheme was chosen for the two-dimensional

problem because it is unconditionally stable for the conduction

equation, [60]. The solutions for the conservative and non-conservative

forms with Neumann's solution using Crank-Nicholson differencing

provides further justification for choosing the correct form for the

two-dimensional problem. Using the Crank-Nicholson differencing scheme,

Eqs. (4-10) and (4-11) for the problem solved become:
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Figure 4-5: Comparison of Neumanr,'s Solution to the Enthalpy
Equation Differenced in Conservative Form
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Equation Differenced in Non-Conservative Form



97

<Hk+1Hk>I<At (Ax ) z

k+1 k+1

kj+ I + kj k+ 1 k+ I

(Tj+ I - Tj

k+1 k+1

kj + kj-1 k+1

............ (Tj
(.5)

k k

I <kj+ I + Tj(Ax) z 2

k k

(Tj+ I - Tj )

k k

kj + kj_ I
(.5) (4-21)

I Hk+1 - Hk I IAt (Ax)

I k+1 k+1 k+1 k+1

k] (Tj+ I - 2Tj + Tj_ I)

k+1 k+1 k+1 k+1

(kj+1 - kj-1)4(Tj+1 - Tj-I ) 1

I / k k k k

(_x) z _kj (T3+ I - 2Tj + Ti_ I)

(.5)

k k k k

(kj+1 - Rj-I)(Tj+I - Tj-I" I (.5)

k+1

when Hsm < Hj < HLm Tj

k+1

and Kj

4

k+1

= T m

= k s + (K L - k s )

k+1

Hj - Hsm

HLm - Hsm

(4-22)

(4-23)

when

k+l k+1

Hj > HLm Tj

k+1

and kj = k L

= Tm +

k+1

HLm - Hj

DC L
(4-24)
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All second order derivatives are approximated using three point

differencing; all first order derivatives using two point differencing.

Gauss-Seidel iteration was used so that the temperature profile with the

effect of the phase change could be obtained at any time step.

As can be seen from Fig. 4-5, Crank-Nicholson differencing of the

conservative form of Eq. (4-5) yields results that compare favorably

with Neumann's approximate analytical solution. However, the agreement

deteriorates with increasing values of the step change temperature.

This is to be expected, since if all numerical criteria for a

computational zone remain constant, a more rapidly changing solution

with real time is apt to be less well approximated by the derivatives.

The large error introduced into the solution by differencing the

non-conservative form of Eq. (5-4) is very apparent in Fig. 4-6. The

error (defined as the difference between Neumann's value and the

numerical value divided by Neumann's value) is fairly consistent, and is

equal to approximately 100 percent through the entire solution. The

numerical solution shows about twice the amount of time needed to

achieve a desired melt distance than that predicted by Neumann's

solution.

In the numerical simulation of the weak formulation of the phase

change equations, attention needs to be given to the conservative and

non-conservative for_s of these equations. For the particular problem

at hand, clearly the conservative form should be used.

Transformation of Phase Change Equations

Since the phase change equations will be solved in the transformed

plane, those portions of the equations that have a spacial dependency
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must be transformed. Becauseit has been _hownthat the conservative

form of the field equation must be used, only the transformation

operators for the first order derivatives :_eedto be used. FromChapter

2, the appropriate derivative operators ne<_dedto effect the

transformation of the field equation are:

..... (4-25)

_y J

Applying these to Eq. (4-5) yields:

D .... _ k
8t J _ _[ _n _n _

+ -3 k
J _ _n _n _ _ k 8x 8TII

(4-26)

(4-28)

Expanding Eq. (4-28) produces the following:

.... _ k

_t J 8_ _n 8_ _

k 8 k

_y 8[ _ _x _[ _ _x

+ -- +

8 k

_n

_n

8x 8T 1
k

8n _

8 8 k

8x 26 _n _x 8n 8_

-- ---- + ---- (4-29)
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_H I

@t J

_y @y

@ k --

a_

B k --

+

k --

_y 8y _n

_E _E _n

_x @x

+

k --

@n

_n

(-;B k -
@x @x "@{

_x _x

_) k --

_x Bx

_n @n
(4-30)

_H I

p ....
_t J

- +

• @ k --

+ +

But it was shown in Chapter 2 that

-- \_/ 1_

} (4-31)

(4-32)
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ay ay _x _x

+

an _E a_ a_

(4-33)

(4-34)

Thus Eq. (4-31) may be written as

I_ a k a k

aH I

at jz a_ a_

a k a k

- ,q + y (4-35)

an an

Equation (4-35) is the transformed enthalpy _quation [Eq. (4-27)] that

must be solved in the transformed plane.

The boundary condition equations are th_ same as those for a

layered conduction problem, that is, equaliti_ of temperature and normal

heat flux at the interfaces:

T I = T2 I
I I

(4-36)

kl

I
I

= k 2
2

(4-37)

For a convection condition:

aT

--k --

an

= h (T .. T ) (4-38)
s
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Transformation operators are needed to provide a value of the

temperature derivative normal to a surface at a specified point.

from Chapter 2, these are

_- = .... y -- _ _ --

_n J 7_-- _)q _9_

To a line of

constant D

Again,

(4-39)

On the presumption that the boundary is along the upper or lower edge in

the transformed plane (a line of constant _), Eqs. (4-37) and (4-38)

become

kl

I _ 8T I
I

= k2 J TW_-- _n

I I

- k

_T

(4-41)
I = h(T - T ) (4-42

s

Is

Equations (4-41) and (4-42) are the transformed normal heat flux

equations that must be solved in the transformed plane.

Discretization of the Phase Change Equations

Figure 4-7 depicts a section of the grid in the transformed plane.

Because of the fact that the individual elements in the real plane may

be irregular and unsymmetric, all eight nodes surrounding the node of

concern must be involved in the differencing. It becomes more apparent

as to the manner in which Eq. (4-31) needs to be differenced if the

equation is "numerically" broken down as follows:
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Figure 4-7: Schematic of Grid with a General Node
Assignment in the Transformed Plane
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J P

2

+ M

Hk+1 _ Hk

At

= (I-M)

aT

k --

a_

aT k

k --

an

i+1,j

I aT Ik+1

k --

a_

ii+I/2,j

aE
k

i+1/2,j

aT

k --

aq

TIkk --

a_

i-I

aT

k --

an

>< ik-- -- k ----

2 a_

-1,j . i,j+1

k

k --

an

,j -1/2

k --

a_

i,j+1/2

Ik+1 1

i-I/2,j

/2,j I

m

R

2

aT

k --

aE

aT k+ 1

an

i+1,j

k --

an

li-l,j li,j+1

klliiiklTkl1+ _ k -- - k --

an an

i,j-1 i,j+1/2 _i,j-1/2

(4-43)

As can be seen, the Crank-Nicholson numerical scheme is being used.

Three point differencing is applied to all second order derivatives and

two point differencing to all first order derivatives. Note that the

locations (I+I/2,J), (I-1/2,J), (I,J+I/2), (I,J-1/2) are at the

boundaries of the central node. If the central node should be

undergoing a change of phase, it will have at least one solid and at
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least one all liquid node adjacent to it. Assigning a correct value of

conductivity at the "edge" now becomesa concern. The approach used by

Marano [5] and Chao [7] will be used. The conductivity will be

estimated by simply averaging the conductiv_ ties of the two nodes having

this edge in common. The differenced field equation for the phase

change region then becomes

2 _+! H_ < kk kk _ T_
i, 3 l,j l+',j + l,j (T +1,j 1,3Ji,j D = (I-M) _i,j .............. - ' )

At 2

k,k kk
1,j + i-l,j (T k - Tk

- _i,j 1,j 1-1,j
2

9i, j [ k k k kki+1, j (Ti+1,j+ I -Ti+ I j i ) -k. , - l-l,j
2

k k ](T.
i-I,j+I - Ti-l,j-1)

_ [ k k k k k k ]i,j ki,j+ I (Ti+1,j+ I - Ti_1,j+1 ) - k (Ti , - Ti_ )l,j-1 +I j-1 I,j-I
2

+Yi,j

1 ,j+1 l ,j I_k -_ 1
l,j+1 i,3

- Yi,j

k.k kk
l,j + i'j-1 c_k __k

1,j l,j-1 )J

(Equation continued on next page.)
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+ (M)
kk+1 k+1

i+I ,j + k.1,j

ai 'J 2
(Tik+1 k+1-T. .)

1,j l,]

- _i,j

kk+1 k+1

. . +k i1,3 -1,j k+1
(T

l,j

k+1
-- T,

l-l,j

8i,j Fkk+1 (T k+1

2 L "i+1,j i+1,j+1

_ T k+1
i+1,j-1 ) _ k k+1 (T k+1 _ Tk+1 )_i-l,j i-l,j+1 I,j-I

8i,j _'. k+1 . k+1 k+1

kki,j+1 [Ti+1,j+1 - Ti_1,j+ I
2

"3

kk+ I . k+ I k+ I I)
i,j-1 (Ti+1,j-1 - Ti-l,j-1) J

i,j+1 i 3 (T k+1 _k+1' . - T. ,)
+Yi,j l,j+1 i, 3

kk+1 k+1 }

i j + ki'j-1 (Tk+1 k+1' - T. )
i,j 1,3-1

- Yi,j 2 (4-44)

Note that with the insertion of "M" and "I-M", the algorithm can become

anything from purely implicit (value of "M" equal to zero) to purely

explicit (value of "M" equal to 1.0). For an "M" of 0.5, the algorithm

becomes the Crank-Nicholson scheme.

The boundary condition for equality of normal heat flux at a solid

boundary becomes:
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I Wi,1 _i,I Ti+1'1 - Ti-1'1 1(Ti, 2 - Ti, I ) ..........
kij Jil Jil 2

upper

ki'jmax I Yi ,j max
Ji,jmax _Yi,jmax

(Ti ,j nax - Ti,jmax-1 )

8i,jmax Ti+1,jmax - Ti-l,jmax

/Ji ,jmax JYi, j max 2
lower

(4-45)

The algorithm is similar for a convective boundary, except that

h(T(I,1) - T infinity) or h(T(I,Jma x) - T infinity) replaces either the

left or right hand side of Eq.(4-45), depen_ing on whether the

convective boundary is on the upper or lower surface of the grid.

It should be noted here that one may wLsh to account for the latent

heat of fusion for the half-cell at the boundary in the phase change

region for large mesh sizes. Though the mathematical formulation is

correct, it applies only to a point. When numerically modelling a

problem, however, the numerical equivalent applies to a discrete region

in space. In the problem being modelled, one half of this discrete

region at the boundary absorbs heat in the amount of the latent heat of

fusion. For a large discrete region (larg_ mesh size) the error

introduced in directly applying Eq. (4-45), without modifications to

incorporate the latent heat of fusion in t_e half cell, may be

significant.
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Logic for the Numerical Solution of Phase Change Field Equation

One approach for numerically implementing Eq. (4-31) under the

conditions specified by Eqs. (4-6) through (4-8) in a manner that is

computationally convenient, is to write three field equations; one each

for the solid, melt, and liquid states. In doing this, only the equation

for the melt state needs to be written with an enthalpy term, while the

other two equations can be left in terms of the temperature. The nodal

enthalpy is then calculated separately from the iterated temperature.

The three field equations become

3 k -- 3 3 k 3 k

3T 1 3_

..... R - F_ +yOCs z
3t j 3_ 3_ 3n 3n

where H = DsCs T and k = ks at the node (4-46)

where k = k s + (k L - k s )

Hnode - Hsm

HLm - Hsm

(4-47)

and T = Tm at the node

_T I

pC L ..... Z
8t J

where H = HLm + DLC L (T-Tm)

and k = k L at the node (4-48)



109

It should be noted that the differencing for the solid and liquid field

equations must be almost identical to the meit equation (which resulted

in Eq. (4-44)). The only difference is that the specific heat is not

combinedwith temperature in the time derivative to give the enthalpy

variable. The reason for this is that even though a node maybe all

solid or liquid, it mayhave next to it a no_e undergoing a change of

phase. The heat flux through a cell edge adjacent to a melting node will

not be properly accounted for unless there is a proper "averaging" of the

conductivities.

Figure 4-8 graphically depicts the iteration logic for a node in a

phase change region. A check is first madeon the previously calculated

enthalpy of a node. Based on this check, either the solid, melt, or

liquid algorithm is used. A new value of erthalpy is calculated, and a

check is performed to see whether this valu( is within the range of

enthalpies for which the algorithm is valueci. If the check is positive,

the subroutine moves on to the next node. Zf it is negative, a new

algorithm is chosen, based on the new enthaLpy value. In the event that

none of the three algorithms calculate an e_thalpy value valid within its

range, a counter in the subroutine (which ilcreases by a single integer

each time an algorithm is used for a given node) will terminate the

calculations, indicating that convergence w%s unachieveable for a node in

the melt region.

It should be noted that in the melting subroutine a convergence

problem often occurs at those points which represent the onset and

conclusion of a phase change. In other words, for example, at the onset

of melting, the solid phase algorithm will calculate an enthalpy that is
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Imp-_liquid melting point

ew_>Hlmp
Yes

I

End of pass for node (i,))

Figure 4-8: Code Logic for the Melting Subroutine
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just slightly above its "legal" range, and t_e melt algorithm will

calculate an enthalpy that is just slightly _elow its "legal" range.

This convergence problem is alleviated, with virtually no effect on

accuracy, by numerically allowing the "legal ranges to overlap each

other slightly.

Appendix F lists the key subroutine thai_ implements the algorithms

for the enthalpy formulation of the phase change equations. Appendix G

lists the key subroutine that implements the conductive boundary

condition for a phase change region.

Comparison with One-Dimensional Iced Airfoil

Figure 4-9 shows a comparison between results obtained using the

computer code developed here and Marano's [_] one-dimensional code

developed for a composite body with phase change, which was intended for

the purpose of modeling an iced airfoil. Beth codes determined the

transient response of a "standard" electrothermal deicer, as defined in

Marano's work in Table 3-6. The standard d_icer was initially at a

uniform temperature throughtout. At the in_ tial instant of time, a

nichrome heating element was engaged having an equivalent surface heat

flux of 25 watts per square inch. Figure 4-9 plots the movement of the

melt line in a layer of ice as the composite "warms up", beginning with

initial temperatures of 10 and 20 degrees Farenheit below the melt

te_erature. In the current study, the one-dimensional problem was

simulated by usirug two-dimensional concentric cylinders to identify

layer boundaries. This problem, for uniform conditions in the angular

direction and a sufficiently large circle radius compared to layer
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thickness, will model

Marano's one-dimensional problem with negl:gible error due to geometry.

The temperatures predicted by both codes cc:mpare favorably.

There is initially a slight overpredi_ tion in the melt front, with a

crossing of lines and a subsequent Slight _nderprediction for later times

in the problem. This result would be expected in light of the comparison

with the transient response of the ice/abrasion shield interface

temperature presented in Chapter 3, Figure 3-6, for the pure conduction

problem. As the initial temperature rise it the interface slightly leads

the results shown by Baliga [4], Marano [51, and Chao [7], it is to be

expected that initially the melt line slightly leads in the phase change

problem. Also, as the temperature rise la<Is slightly later in the

problem, one would expect a corresponding .'ag in the melt line for the

phase change problem.
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CHAPTER5 EXPERIMENTALCOMPARISONWITHAN ICEDAIRFOIL

Over the years extensive research in the areas of ice accretion,

de-icing, and the effects of icing on aero-performance have been

investigated in a subsonic icing wind tunnel located at the NASALewis

Research Facility in Cleveland, Ohio. The IRT (Icing Research Tunnel) is

essentially the same as any closed loop subsonic wind tunnel, with two

significant differences. First, the tunnel contains a bank of chillers

which obtain/maintain tunnel temperatures well below freezing. Secondly,

a spray rig exists upstream of the test section to inject a water mist

into the airstream. Under proper conditions, ice will accrete on an

object in the test section. The intent is to simulate the natural

accretion of ice on a body as it would occur in flight under icing

conditions.

Recently, a battery of tests was undertaken in the IRT to

investigate the performance of an electrothermal de-icer pad installed in

a section of a UHIH helicopter rotor blade. A portion of the test

results have been reported and analysed by Leffel, et al. [9]. The

electrothermal de-icer used in the blade was designed and manufactured by

the B. F. Goodrich Co. The testing was conducted in four phases: dry

air tests, wet air tests, accretion documentation tests, and, finally,

de-icing tests. The computer code developed in the current work was used

to simulate the thermal response for a section of the blade for one of

the de-icing tests.
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Figure 5-I illustrates the layered consul:ruction of the blade

section that was fabricated for the test. _e assembly is similar to

that of a standard de-icer, except that the :;ubstrate is composed of

three separate layers: an aluminum skin whi;h is wrapped around a

doubler that sits on the D-spar. At the lea_ing edge, the doubler

thickens and becomes what is known as the no_eblock. The noseblock,

typically, is made from brass, not aluminum. Each of the layers are

bonded together with either an epoxy glue or a film adhesive. Note that

with the bonding materials, there are a total of thirteen layers, not

including any accreated ice.

one inch zones along the arc.

other zones.

The heater was divided into eight separate

Each zone car fire independent of the

As the blade was being fabricated, thr_e layers were heavily

instrumented with thermocouples. The therm<couple placements within the

layers are graphically depicted in Fig. 5-2. The thermocouples were

placed at the inner side of the D-spar, the inner side of the heater

mat, and the outer side of the abrasion shi,!_id. The rows of

thermocouples were placed arc-wise at the heater segment centers,

through three "cuts" of the test section, he transient responses of

similarly located thermocouples in the three cuts were an indicator of

uniformity of de-icing performance in the s:>an-wise direction. Each cut

also serves as a backup to insure a reading at a specified location in

the event of a thermocouple failure at a similar location.

The material properties of the layers in the test section, along

with average values of their thicknesses, are presented in Table 5-I.

Modeling a de-icer pad consisting of the t_irteen layers (fourteen with

a layer of accreted ice) for a reasonable rumber of nodes along the arc
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ACTUAL BLADE GEOMETRY

Values of k in BTU/hr-ft-°F

Values of _ in Square ft/hr

Values of thickness in inches

NUMERICAL SIMULATION

Values of k in BTU/hr-ft-°F

Values of a in Square ft/hr

Values of thickness in inches

Layer Properties Thickness Thickness Properties Layer

Abrasion k = 8.7 0.030 0.030 k = 8.7 Abrasion

Shield a = 0.15 a = 0.15 Shield

Adhesive k = 0.1 0.0168

Epoxy _ = 0.0058

Insulation k = 0.22 0.0138 0.0388 k = 0.1

= 0.0087 _ = 0.0058

Adhesive k = 0.1 0.0082

Epoxy _ = 0.0058

Insulation

Heating k = 60.0 0.0065 0.0065 k = 60 Heating

Element a = 1.15 a = 1.15 Element

Adhesive k = 0.1 0.0082

Epoxy s = 0.0058

Insulation k = 0.22 0.138 0.1544 k = 0.1 Insulation

= 0.0087 _ = 0.0058

Adhesive k = 0.01

Epoxy s = 0.0058

0.0082

Blade k = 8.7 0.02

Skin a = 0.15

Film k = 0.1 0.01

Adhesive a = 0.0058

Aluminum k = 102 0.05 0.265 k = 102 Aluminum

Doubler e = 2.83 e = 2.83 D-Spar

Film k = 0.1 0.01

Adhesive _ = 0.0058

Aluminum k = 102

D-Spar a = 2.83

0.1 75

Table 5-I Actual Blade Thicknesses and Material Properties vs. Those

Used in Numerical Simulation
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would be computationally quite difficult; ::he estimated CPU time would

be extremely large. Thus, a number of lay<'rs were "lumped" together in

the numerical simulation of the blade. Th_ adhesive epoxy on both sides

of the upper and lower insulation layers h_:s been lumped into the

insulation. The total thickness assigned : s the sum of three individual

thicknesses, with the material properties l,eing those of the adhesive.

The blade skin, doubler and D-spar, with the two layers of film

adhesive, have been lumped into a single "D-spar" layer. Again, the

total assigned thickness to this layer is i_he sum of the five individual

thicknesses, with the assigned properties being those of aluminum.

Lumping the layers in this fashion for the lower insulation and the

D-spar should have very little effect on tile thermal transients in the

heater and abrasion shield. In the blade construction the lower

insulation has 16 times the thickness of t}Le film adhesive, with the

properties of the film being on the same o;der of magnitude as the

insulation. Since the lower insulation is 10 times thicker than the

upper insulation, most of the energy initi,_lly generated in the heaters

will be driven toward the abrasion shield. Thus, any lumping below the

lower insulation should have a negligible ,_ffect on the temperature

transients in layers above the heater, espc'cially for short real times

into the problem. Lumping together the upper insulation with two epoxy

layers, and having material values of the ,_poxy, may slightly retard the

temperature at the abrasion shield. The insulation material values are

slightly higher for both conductivity and diffusivity.

The UHIH airfoil is the same as the NACA 0012. Using dimensionless

NACA 0012 coordinates provided by Abbot and Doenhoff [61], the

coordinates for those portions of the airf:_ii containing the heaters
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were generated. These coordinates were assigned node numbers for

subsequent numerical computations, which are displayed in Fig. 5-3.

These nodes represent the coordinate locations for the outer edge of the

abrasion shield. A coordinate generating subroutine, beginning with

these nodes as a starting point, then generated the boundary coordinates

for any inner or outer layers. On the outer edge of the abrasion

shield, the nodes were spaced at one eighth inch intervals. This made

the heater zones one inch wide, with each heater having a node with an

adjacent heater. Nodal locations 21, 29, 37, 45, 53, 61, 69 and 77

represent the thermocouple arc locations on the UHIH test section.

The test case simulated by the numerical code was designated in

Leffel's work as reading 234, position 5 (node 69), thermocouples 53

(abrasion shield) and 26 (heater). For this particular test, the wind

tunnel test speed was 100 mph, the ambient temperature was 16 °F, the

angle of attack was zero degrees, the heater power density was 8 watts

per square inch, and the air liquid water content was 2.2 grams per cubic

meter with an average droplet diameter of 19.2 microns. The accretion

test for this run showed that approximately three eighths of an inch of

ice had accreted on the test section near node 69. For the first cycling

of heater zone "G" (see Fig. 5-3), the heater was engaged for twenty

seconds, and then disengaged for thirty seconds.

A comparison of the thermocouple data generated at position 5 (node

69) with the numerical simulation predictions is presented in Fig. 5-4

for the conditions described above. As can be seen, there is excellent

agreement between the numerical and experimental results for that portion

of the cycle for which the heater is engaged, and for the first third of



121

I

I



122

(9o) aJn_eJadme2



123

that portion with the heater disengaged. Fcr both the heater and

abrasion shield, the numerical model underpredicts the magnitude of the

heat dissipation in the test case for the latter portion of the cycle

when the heater is disengaged. Since the numerical simulation is

clearly modelling the transients accurately for the "warm up" and the

first portion of "cool down", there is obvil)usly some physical

phenomenon occurring in the test case that is not properly accounted for

in the numerical simulation of the latter p>rtion of the "cool down".

One obvious possibility is the loss of ice (either through natural

shedding or with an "assist" by the initial warming) at this location.

With less ice at this location (ice is an excellent insulator) the heat

would have dissipated much more quickly in the test case. A second

possibility, and one that is much more likely, is that the thermal

properties of the materials in the test section are changing with

temperature. The numerical code can handl_ this condition with only

slight modification, provided that the material properties are known as

a function of temperature. Whether or not material properties for the

insulation, epoxy glue, and film adhesive vary as a function of

temperature is not currently known.

A test case of the numerical code was run to determine the extent

of any geometric effects on temperature transients that current one-and

two-dimensional codes cannot model. The s_me thickness and materials

were used as in the comparison above, but this time the heater density

was 16 watts per square inch. In this simulation, in which all of the

heaters were fired, a case is provided where effects due to geometry

only could be investigated. Table 5-2 displays the results of selected
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points on layer interfaces along the leadinc edge arc (where curvature

is the highest). As can be seen, the outer layers experience a slight

temperature drop, while the inner layers experience a slight temperature

rise, for those regions near the leading ed_e. This is exactly what

would be expected. As the thermal wave mowers outward from the heater,

there is more mass to absorb the generated energy. As the thermal wave

moves inward from the heater, there is less mass, as a consequence of

curvature, to absorb the generated energy. Consequently, one would

expect a slight temperature drop outward from the heater, and a slight

temperature rise inward from the heater, in contrast to results

predicted using a one-dimensional model. F>r the particular case run,

the temperature rise at the blade's stagnation point is 2.35 degrees

Farenheit lower due to curvature/geometry. Out of a total temperature

rise of 27.54 degrees expected for the one-_imensional case, this

represents an error of 8.5% at this point d_ae to geometric effects 25

seconds into the problem. Obviously, the magnitude of the error will be

primarily a function of distance from the source of the thermal

disturbance, the strength of the thermal disturbance, the degree of

curvature, and the amount of real time into the problem, for this

particular simulation.
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CHAPTER6 CONCLUSIONS

In this thesis a computer code has been developed that is capable

of handling any numberof irregularly shaped layers in a composite body

undergoing a transient conduction process. The code is capable

of handling thermal generation within any of the layers, as well as

phase change in an outer layer. The computer code was verified for a

wide variety of test problems.

The computer code was employed to simulate the actual transient

thermal response of a UHIH rotor blade equipped with an electrothermal

de-icer system. Good agreement over the majority of a heating cycle

with test data was obtained. Additional runs with the code on the UHIH

blade cross-section clearly showed the effect of geometry/curvature on

the thermal transients.

It is believed that this code can be a very useful tool in airfoil

ice protection design. It may also be used to determine where and under

what conditions one-dimensional codes will yield satisfactory results

(with obvious savings in time and money), and where a two-dimensional

code is required.

Additional work is needed to apply more numerically sophisticated

techniques into the spacial transform, the conduction, and phase

change portions of the problem to accelerate convergence. The run made

for the experimental comparison required 30 minutes of CPU time on a

CRAY-XMP located at the NASA-Lewis Research Facility in Cleveland,

Ohio.
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Finally, additional IRT tunnel experimentation is needed in order to

provide additional insight into the thermc-physics and other related

phenomenaeffecting electrothermal de-icer performance.
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ALPHA VALUES FOR THE LAYER ARE :

3.930280 3.930252 3.930280 3.930289 3.930271

3.038534 3,038523 3.038528 3.038530 3.038529

1.761444 1.761443 1.761440 1.761440 1.761452

1.038439 1.038438 1.038440 1,038438 1.038441

0.621851 0.621850 0.621849 0.621849 0.621850

0.377859 0.377859 0.377859 0.377858 0.377860

0.232761 0.232761 0.232760 0.__32761 0.23276 °

0.145231 0.145231 0.145231 0.145231 0.145231

0.091716 0.091716 0.091716 0.091716 0.091716

0.058583 0.058583 0.058583 0.058583 0.058583

0.046394 0.0463?5 0.046394 0.046395 0.046394

BETA VALUES FOR THE LAYER ARE :

0.000172 0.000035 -0.000020 -0.000031 -0.000030

-0.000063 0.000028 -0,000018 -0.000010 -0.000018

-0.000022 0.000005 -0,000005 -0.000007 -0.000010

-0.000006 0.000000 0.000001 -0.000007 -0.000002

0.000000 -0.000000 0.000003 -0.000002 0.000000

0.000001 -0.000000 0.000002 0.000001 0.000001

0.000002 0.000001 0.00000] 0.000001 0.000002

0.000002 0.000001 0.00000[i 0.000001 0.000002

0.000002 0.000000 0.00000:I 0.000001 0.000002

0.000001 0.000000 0.00000:_ 0.000001 0.000001

-0.000003 -0.000000 0.00000) 0.000001 0.000000
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GAMMA VALUES

27.985016

17.013947

10.503365

6.577075

4.173593

2.681605

1.743235

1.145768

0.760941

0.510357

0,345494

JACOBIAN VALUES

10.487561

7.190097

4.301290

2.613405

1,611010

1,006612

0.636991

0,407923

0.264179

0.172911

0.126605

FOR THE LAYER ARE :

27.984741 27.984695 27.984726 27.984741

17.013962 17.013870 17.013855 17.013-855

10,503394 10.503348 10.503335 10.503335

6.577109 6.577087 6.577077 6.577081

4.173619 4.173608 4.173602 4.173599

2.681616 2.681611 2.681610 2.681606

1,743243 1.743240 1,743237 1.743236

1.145776 1.145772 1.145768 1.145767

0,760944 0.760941 0.760939 0.760939

0.510356 0.510354 0.510353 0.510353

0,345491 0,345490 0.345491 0.345491

FOR THE LAYER ARE :

10.487476 10.487505 10.487524 10.487501

7.190085 7.190073 7.190073 7.190069

4.301294 4.301_8_ 4,301279 4.301294

2.613412 2.613409 2.613404 2.613409

1.611012 1.611010 1.611009 1.611009

1.006615 1.006614 1,006613 1.006613

0.636993 0,636991 0,636992 0,636993

0,407924 0.407923 0.407923 0.407923

0.264179 0.264179 0.264179 0.264178

0.172911 0.172911 0.172911 0.172910

0.126605 0.126605 0,126605 0.126604
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APPENDIX C

Computer Output of Spacial Transform

Coefficients for a Pine Mesh
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ALPHA VALUES

0.234702

0.222154

0.198727

0.177777

0.159050

0.142305

0.127331

0.113938

0.101959

0.091242

0.081655

0.073079

0.065406

0.058543

0.052399

0.046903

0.041984

0.037583

0.033644

0.030120

FOR THE LAYER

0.234698

0.222152

0.198724

0.177782

0.159053

0.142304

0.127330

0.113938

0.101958

0.09124 _

0.081655

0,073079

0.065407

0.058542

0.052399

0.046903

0.041984

0.037583

0.033645

0.030120

ARE :

0.234697

O.nnnl4?__

0.198726

0.177784

0.159054

0.142305

0,127333

0.113933

0.101959

0.091242

0.081655

0.073079

0.065405

0.058541

0.052399

0.046903

0.041984

0.037583

0.033644

0.030123

0.234694

0.oon145.._

0.198725

0.177781

0.159053

0.142305

0.127332

0.113941

0.101959

0.091243

0.081656

0,073O80

0.065407

0.058543

0.052400

0.046903

0.041984

0.037582

0.033643

0.030119

0.234692

0.222143

0.198723

0.177782

0.159055

0.142309

0.127334

0.113942

0.101961

0.091244

0.081657

0.073079

0.065406

0.058542

0.052399

0.046902

0.041984

0.037582

0.033643

0.030118
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0.026965

0.024142

0.021615

0.019354

0.017331

0.015519

0.013898

0.01_446

0.011147

0.009983

0.008941

0.008009

0.007173

0.006425

0.005756

0.005156

0.004619

0.004138

0.003707

0,003321

0.003141

0.026966

0.024142

0.021615

0,019354

0.017331

0,015519

0.013898

0.012446

0.011147

0.009983

0.008941

0.008009

0.007173

0.006425

0.005756

0.005156

0.004619

0.004138

0.003707

0.003321

0.003141

0.026965

0.024142

0.021615

0.019354

0.017331

0.015520

0.013898

0.012447

0.011147

0.009983

0.008941

0,008008

0.007173

0.006425

0.005755

0.005156

0.004618

0.004137

0.003707

0.003321

0.003141

0.026965

0.024142

0.021616

0.019355

0.017331

0.015520

0.013898

0.012447

0,011147

0.009983

0.008941

0.008008

0.007173

0.006425

0.005755

0.005156

0.004618

0.004137

O.OO3707

0.003321

0.003141

0.026964

0.024142

0.02-1615

0.019355

0.017331

0.015520

0,013898

0.012446

0.011147

0.009983

0.008941

0.008008

0.007173

0.006425

0.005755

0,005155

0.004618

0.004137

0.003707

0.003321

0.003141
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BETA VALUES

0.000075

-0.000007

-0.000003

0.000001

0.000001

0.000002

0.000003

0.000003

0.000002

0.000002

0,000002

0.000002

0.000001

0.000001

0.000001

0.000001

0.000001

0.000001

0.000001

0.000000

FOR THE LAYER

0.000019

0,000018

0.000015

0.000010

0.000008

0.000007

0.000005

0.000004

0.000003

0.000002

0,000000

-0.000000

-0.000001

0.000000

-0.000000

-0.000000

-0.000000

-0.000001

-0.000001

-0,000000

ARE :

0.000007

0.000009

0.000012

0.000010

0.000011

0.000011

0,000009

0,000007

0,000005

0.000003

0,000001

0,0000_

-0.000_00

-0.000001

-0.000002

-0.000002

-0.000002

-0.000002

-0.000001

-0.000001

0.000002

0.000005

0.000009

0.000010

0.000014

0.000013

0,000009

0.000007

0,00000_

0.000004

0. 000001

0.000000

-0. O000_O

-0.000001

-0.000001

-0.000002

-0,000002

-0.000002

-0.000002

-0.000000

0.000006

0.000001

0.000003

0,000008

0.000011

0.000010

0.000007

0.000006

0.000005

0.000003

O.OOOO02

0.000001

0.000001

0.000000

0.000000

-0.000001

-0.000000

-0.000001

-0.000001

-0.000001
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0,000000

0.000000

0,000000

0,000000

0.000000

0,000000

0o000000

0.000000

0.000000

0.000000

0.000000

0.000000

0,000000

0.000000

-0.000000

-0.000000

-0.000000

OoOCO000

0.000000

0.000000

-0.000001

-0.000000

0.000000

0.000000

0,000000

-0.000000

-0.000000

-0o000000

-0,000000

-0.000001

-0.000001

-0.000001

-0.000000

-0.000000

-0.000000

-0.000000

-0.000000

-0.000000

-0.000000

0.000000

-0.000000

-0.000000

0.000000

0.000001

0.000001

0,000001

-0.000000

-0.000000

-0.000000

-0o000000

-0.000001

-0.000001

-0.000001

-0.000001

-0.000001

-0.000001

-0.000000

-0.000000

-0.000000

0o000000

0.000000

0o000000

0.000000

0.000000

0.000001

0.000001

0.000000

-0o000000

-0.000000

-0.000000

-0.000000

-0,000000

-0.000000

-0.000000

-0,000000

-0,000001

-0,000001

-0,000000

-0.000000

-0.000000

0.000000

0.000000

0.000000

-0.000000

-0o000001

0,000000

0.000001

0.000000

0.000000

0.000000

-0.000000

-0o000000

-0.000000

-0o000000

-0°000000

-0.000000

-0.000000

-0o000000

-0.000000

-0.000000

-0.000000

0.000000

0.000000

0.000000

-0.000000
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GAMMA VALUES

1.982297

1.774610

1.588758

1.422436

1.273581

1,140352

1.021104

0.914365

0.818816

0.733284

0.656713

0.588183

0.526791

0.471841

0.4_640_

0.378584

0.339135

0.303809

0.272174

0.243843

FOR THE LAYER

1.982210

1.774612

1.588765

1.422443

1.273591

1.140362

1.021116

0.914376

0.818828

0.733292

0.656721

0.588168

0.526794

0.471842

0.422640

0.378585

0.339136

0.303810

0.272175

0.243844

ARE :

1.98221(i

1.77457"

1.58874b

1.42244_i

1.27359_!,

1.140370

1.02113()

0.91438_ _

0.81884:i

0.733307

0.656732

0.588179

0.526802

0.47185_)

0.42264_i_

0.378588

0.339138

0.3O3812

0.272176

0.243844

1.982200

1.774553

1.588731

1.422431

1.273587

1.140371

1.021133

0.914397

0.818851

0.733317

0.656744

0.588190

0.526814

0.471860

0.422655

0.378596

0.339143

0.303814

0.272177

0.243845

1.982200

1.774546

1.588715

1.422419

1.273577

1.140366

1.021129

0.914396

0.818850

0.733320

0.656748

0.588195

0.526817

0.471864

0.422658

0.378599

0.339146

0.303817

0.272179

0.243846
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0.218469

0.195744

0.175389

0,157157

0.140826

0,126197

0,113093

0,101353

0,090836

0.081413

0,072971

0.065407

0,058629

0.052556

0.047114

0.042237

0.037866

0,033949

0,030439

0,027293

0,024473

0,218470

0,195745

0,175390

0,157158

0,140827

0,126198

0,113093

0.101.353

0,090836

0.081413

0,072970

0.065406

0.058629

0.052556

0.047113

0.042237

0.037866

0.033949

0.030439

0.0_7293

0,0_447?_

0,_18471

0,195745

0,175391

0,157159

0,140828

0,126199

0,113094

0.101354

0,090836

0.081413

0.072970

0.065406

0.058628

0.052555

0,047113

0.042236

0.037865

0.033948

0.030438

0.027292

0.024472

0,218471

0,195746

0,175392

0,157160

0,140829

0.in6200

0,113095

0,101355

0,090837

0.081414

0,072971

0°065406

0.058628

0.052554

0.04711 _

0.042235

0.037865

0,033948

0,030438

0.0272Q1

0.024472

0,218472

0,195747

0,175393

0,157161

0,140830

0,126201

0,113096

0,101355

0,090837

0.081414

0,072971

0.065406

0,058628

0.052554

0.047112

0.042235

0.037864

0,033948

0,030438

0,027291

0.02447 _
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JACOBIAN VALUES FOR THE LAYER ARE :

0.682092 0.682072 0.68207(i) 0.682063 0.682061

0.627883 0.627881 0.62786!_ 0.627861 0.627856

0.561898 0.561895 0.561894 0.561890 0.561884

0.502869 0.502877 0.502879 0.502873 0.502873

0.450071 0.450076 0.450078 0.450075 0.450076

0.402837 0.402837 0.402841 0.402840 0.402846

0.360581 0.360582 0.360583 0.360588 0.360589

0.322771 0.322773 0.32277_ 0.322780 0.322783

0.._88938 O. 288940 O. 288944 O. 288945 0 .288948

0.258662 0.258664 0.258667 0.258670 0.258671

0.231568 0.231570 0.23157:2 0.231575 0.231577

0.207322 0.207323 0.20732'5 0.207327 0.207327

0.185621 0.185623 0.185624 0.185626 0.185626

0.166201 0.166200 0.166201 0.166204 0.166204

0.148815 0.148815 0.148817 0.148819 0.148818

0.133254 0.133254 0.133254 0.133256 0.133256

0.119324 0.119324 0.11932'5 0.119325 0.119326

0.106855 0.106856 0.106856 0.106855 0.106856

0.095693 0.095694 0.095693 0.095692 0.095692

0.085700 0.085700 0.085700 0.085699 0.085698
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0.076753

0.068743

0.061572

0.055151

0.049403

0,044255

0.039645

0.035517

0.031820

0.028509

0.025543

0.022887

0.020508

0.018376

0.016467

0.014757

0.013224

0.011852

0.010622

0.009520

0.008767

0.076754

0.068743

0.061572

0.055151

0.049403

0,044255

0.039646

0.035517

O.O3182O

0.028509

0.025543

0.022887

0.020508

0.018376

0.016467

0.014757

0.013225

0,011852

0.010622

0.009520

0.008767

0.076753

0.068743

0,061572

0.055152

0.049403

0.044256

0.039646

0.035518

0.031821

0.028509

0.025543

0.022887

0.020507

0.018376

0.016467

0.014756

0.013224

0,011852

0.010622

0.009520

0.008767

0.076753

0.068744

0.061573

0.055153

0.049404

0.044256

0.039646

0.035518

0.031820

0.028509

0.025543

0.022887

0.020507

0.018376

0.016466

0.014756

0.013224

0.011851

0 0106 _

0,009520

0.008767

0.076752

o.o68743

0.061573

0.055153

0.049404

0.044256

0.039646

0.035518

0.031820

0.028509

0.025543

0.022887

0.020507

0.018376

0.016466

0.014756

0.013224

0.011851

0.010622

0.009520

0.008767
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APPENDIX D

Computer Subroutine for Transformed

Conduction Equati.on
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APPENDIX E

Computer Subroutine for Transformed

Conductive Boundary _[uation



182

N
4,

,J

I

I

o

,b

,D

J
6

I

I

I

,t,

I

,b

I

t,

I

I

I

I

I

I

,J

I

I

4,

I

C'J
I

I

I

8

6

6

x

J. _ i,,

-J ", 0
"-) 0 P,,

_1 vO
f.D :_..J

") I=-
J _ D,

U') U'_
_J

u,_ c'q

r". 0

I b") _.,I

_ ,-, CO "-11_. 0

Z _J --I.J Z ---

_ Z

_ _ Z

_ I Z

_ Z Z_

_ _ Z

_Z _

0
II

L_J

•_ .)e

•_ I-- ._
._ Z -_.
•_ _-._ ._

._ _-_ ._
-_K-Z ._

•]e ._-
_CO_
_Z_

._ ..J _
_._
_Z_

_ _.- ._.

_Z_

_ cO _K-

_Z_

_C3_

_>-_

_K-U3 _



183

r,.,3 +._

I£_ .,0 I_ 03 0,. 0 ,,--+ _._ I_

l'.q p,,

O- o ,N. s'_
.-4 ,,t. ,_

,,,, 411- ,._

Z o "_ ,N.
<3: - .X..

• "X,. "X,,
o ,,_

• ° o _ "X-

I,-,. + .N-

o _ ,I_
+ -X,.
o _

+ ._.
o _

+ ..X- .'X'.

• ,,X- .C,_..,X,.

£:3 o ,N. I_ -X.
14.. o _, Z .le

U3 t'._ _.lle L._ ._-.)e

_ o _ L_.. _.

o "_ Z -'_-
,,, .PI. C_ .I+

• .,X- I'- .X-
o .N. <3: ._-
.. ,,)_. "-'_ ,._.

•N- -.J ,,N-

O'. o

4



184

(.,) (J

•,-- x x x

",0 0 _"_ "_ ")

X '_ _ r,.9 I I
_" _'* ".-'X X

•.. m,. m,, _ _,'m-4
•"4 _ tO"*" ""

{3 I I .N- Z {3
vX X -".J

t.'%,-" _ ""J X X X X•J_"Z m, <l: <£ <Z <=

•, I I .Jr".. ,, ,, .,

X _ _ ,..4("..I X t'..,I X

•,,,,-i {".J t'.J "_ .J *-q ,..I _'*

_ Z _ v ._1--- .J
-)::3 :3 ._ .X- _.0 ,_. {.0
v _.. b'- ,-_ A ,., A v

_ ".- _ X X t--X _•"--.M- <X: <X: _" _ '_

_m4

<Z <t -._ *, * <I: _ X _ X *

el" el- :_ el. _) .+. e(" ._. _:: ._ <_ -I-
_ =_ r._ :_ LO _0 _.l_J ::1::_.1:1:: a2
(.J U '-- U "-, _ U {..1 _'4 (J _ i_

II II mg_ II E II II tl J I# -J fl
,,...*,.O C_ P.,.. _ ('q r_ co -) o, -"5 _Ir

q,-I ,i.,,q q--I ,v,,,,i

-4-
A

A

X
-4- <I:

I *,
--, X

--- <t:

X ",--
<={3
Z:.J
_-4 I--

I X

x _

I..- -I

C.l _,

x I

Z -,
_X

^;
o..._

£'.1 _

It _'.l

LIJ r"1
*m- ,Z_
i--q

im.

I,E
L61
F-



185

__11

II II II II

II _ P'I _ _

4.

0

II

X

_r

...I

m_

6

.=1 II I_}
_._

,,. la. ". L. ,'_" LIJ

b'3 (1>

_" _0 -0 _'- _ O- 0 _-_ C_ P_ _ L_,O_ TM



186

APPENDIX F

Computer Subroutine for Transformed

Phase Change Equations
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APPENDIX G

Computer Subroutine for Transformed Conductive

Boundary Condition where One Layer's Boundary

Undergoes a Change of Phase
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